89 research outputs found

    Age dependence of the Vega Phenomenon: Theory

    Get PDF
    In a separate paper (Decin et al 2003), we have re-examined the observations of IR excess obtained with the ISO satellite and discussed the ages of stars with excess. The amount of dust (measured by the luminosity fraction \fdust=L_\mathrm{IR}/L_{\star}) seen around main-sequence stars of different ages shows several interesting trends. To discuss these results in the context of a physical model, we develop in this paper an analytical model for the dust production in Vega-type systems. Previously it has been claimed that a powerlaw slope of about -2 in the diagram plotting amount of dust versus time could be explained by a simple collisional cascade. We show that such a cascade in fact results in a powerlaw \fdust\propto t^{-1} if the dust removal processes are dominated by collisions. A powerlaw \fdust\propto t^{-2} only results when the dust removal processes become dominated by Pointing-Robertson drag. This may be the case in the Kuiper Belt of our own solar system, but it is certainly not the case in any of the observed disks. A steeper slope can, however, be created by including continuous stirring into the models. We show that the existence of both young and old Vega-like systems with large amounts of dust (\fdust\simeq 10^{-3}) can be explained qualitatively by Kuiper-Belt-like structures with \emph{delayed stirring}. Finally, the absence of young stars with intermediate amounts of dust may be due to the fact that stirring due to planet formation may not be active in young low-mass disks. The considerations in this paper support the picture of simultaneous stirring and dust production proposed by Kenyon and Bromley (2002).Comment: 26 pages, 3 figures, accepted for Publication in Ap

    A Vega--like disk associated with the planetary system of rho (1) CNC

    Get PDF
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe

    Identification of a nearby stellar association in the Hipparcos catalog: implications for recent, local star formation

    Get PDF
    The TW Hydrae Association (~55 pc from Earth) is the nearest known region of recent star formation. Based primarily on the Hipparcos catalog, we have now identified a group of 9 or 10 co-moving star systems at a common distance (~45 pc) from Earth that appear to comprise another, somewhat older, association (``the Tucanae Association''). Together with ages and motions recently determined for some nearby field stars, the existence of the Tucanae and TW Hydrae Associations suggests that the Sun is now close to a region that was the site of substantial star formation only 10-40 million years ago. The TW Hydrae Association represents a final chapter in the local star formation history.Comment: 5 pages incl figs and table

    Incidence and survival of remnant disks around main-sequence stars

    Get PDF
    We present photometric ISO 60 and 170um measurements, complemented by some IRAS data at 60um, of a sample of 84 nearby main-sequence stars of spectral class A, F, G and K in order to determine the incidence of dust disks around such main-sequence stars. Of the stars younger than 400 Myr one in two has a disk; for the older stars this is true for only one in ten. We conclude that most stars arrive on the main sequence surrounded by a disk; this disk then decays in about 400 Myr. Because (i) the dust particles disappear and must be replenished on a much shorter time scale and (ii) the collision of planetesimals is a good source of new dust, we suggest that the rapid decay of the disks is caused by the destruction and escape of planetesimals. We suggest that the dissipation of the disk is related to the heavy bombardment phase in our Solar System. Whether all stars arrive on the main sequence surrounded by a disk cannot be established: some very young stars do not have a disk. And not all stars destroy their disk in a similar way: some stars as old as the Sun still have significant disks.Comment: 16 pages, 9 figures, Astron & Astrophys. in pres

    Spatial Separation of the 3.29 micron Emission Feature and Associated 2 micron Continuum in NGC 7023

    Get PDF
    We present a new 0.9" resolution 3.29 micron narrowband image of the reflection nebula NGC 7023. We find that the 3.29 micron IEF in NGC 7023 is brightest in narrow filaments NW of the illuminating star. These filaments have been seen in images of K', molecular hydrogen emission lines, the 6.2 and 11.3 micron IEFs, and HCO+. We also detect 3.29 micron emission faintly but distinctly between the filaments and the star. The 3.29 micron image is in contrast to narrowband images at 2.09, 2.14, and 2.18 micron, which show an extended emission peak midway between the filaments and the star, and much fainter emission near the filaments. The [2.18]-[3.29] color shows a wide variation, ranging from 3.4-3.6 mag at the 2 micron continuum peak to 5.5 mag in the filaments. We observe [2.18]-[3.29] to increase smoothly with increasing distance from the star, up until the filament, suggesting that the main difference between the spatial distributions of the 2 micron continuum and the the 3.29 micron emission is related to the incident stellar flux. Our result suggests that the 3.29 micron IEF carriers are likely to be distinct from, but related to, the 2 micron continuum emitters. Our finding also imply that, in NGC 7023, the 2 micron continuum emitters are mainly associated with HI, while the 3.29 micron IEF carriers are primarily found in warm molecular hydrogen, but that both can survive in HI or molecular hydrogen. (abridged)Comment: to appear in ApJ, including 1 table and 8 figures, high resolution figures available at http://www.ast.cam.ac.uk/~jin/n7023

    Mid-Infrared Emission Features in the ISM: Feature-to-Feature Flux Ratios

    Full text link
    Using a limited, but representative sample of sources in the ISM of our Galaxy with published spectra from the Infrared Space Observatory, we analyze flux ratios between the major mid-IR emission features (EFs) centered around 6.2, 7.7, 8.6 and 11.3 microns, respectively. In a flux ratio-to-flux ratio plot of EF(6.2)/EF(7.7) as a function of EF(11.3)/EF(7.7), the sample sources form roughly a Λ\Lambda-shaped locus which appear to trace, on an overall basis, the hardness of a local heating radiation field. But some driving parameters other than the radiation field may also be required for a full interpretation of this trend. On the other hand, the flux ratio of EF(8.6)/EF(7.7) shows little variation over the sample sources, except for two HII regions which have much higher values for this ratio due to an ``EF(8.6\um) anomaly,'' a phenomenon clearly associated with environments of an intense far-UV radiation field. If further confirmed on a larger database, these trends should provide crucial information on how the EF carriers collectively respond to a changing environment.Comment: 16 pages, 1 figure, 1 table; accepted for publication in ApJ Letter
    • 

    corecore