5 research outputs found

    Real-time event-based unsupervised feature consolidation and tracking for space situational awareness

    Get PDF
    Earth orbit is a limited natural resource that hosts a vast range of vital space-based systems that support the international community's national, commercial and defence interests. This resource is rapidly becoming depleted with over-crowding in high demand orbital slots and a growing presence of space debris. We propose the Fast Iterative Extraction of Salient targets for Tracking Asynchronously (FIESTA) algorithm as a robust, real-time and reactive approach to optical Space Situational Awareness (SSA) using Event-Based Cameras (EBCs) to detect, localize, and track Resident Space Objects (RSOs) accurately and timely. We address the challenges of the asynchronous nature and high temporal resolution output of the EBC accurately, unsupervised and with few tune-able parameters using concepts established in the neuromorphic and conventional tracking literature. We show this algorithm is capable of highly accurate in-frame RSO velocity estimation and average sub-pixel localization in a simulated test environment to distinguish the capabilities of the EBC and optical setup from the proposed tracking system. This work is a fundamental step toward accurate end-to-end real-time optical event-based SSA, and developing the foundation for robust closed-form tracking evaluated using standardized tracking metrics

    Neuromorphic engineering needs closed-loop benchmarks

    Get PDF
    Neuromorphic engineering aims to build (autonomous) systems by mimicking biological systems. It is motivated by the observation that biological organisms—from algae to primates—excel in sensing their environment, reacting promptly to their perils and opportunities. Furthermore, they do so more resiliently than our most advanced machines, at a fraction of the power consumption. It follows that the performance of neuromorphic systems should be evaluated in terms of real-time operation, power consumption, and resiliency to real-world perturbations and noise using task-relevant evaluation metrics. Yet, following in the footsteps of conventional machine learning, most neuromorphic benchmarks rely on recorded datasets that foster sensing accuracy as the primary measure for performance. Sensing accuracy is but an arbitrary proxy for the actual system's goal—taking a good decision in a timely manner. Moreover, static datasets hinder our ability to study and compare closed-loop sensing and control strategies that are central to survival for biological organisms. This article makes the case for a renewed focus on closed-loop benchmarks involving real-world tasks. Such benchmarks will be crucial in developing and progressing neuromorphic Intelligence. The shift towards dynamic real-world benchmarking tasks should usher in richer, more resilient, and robust artificially intelligent systems in the future

    [In Press] Evaluation of event-based sensors for satellite material characterization

    No full text
    Broadband photometry has been used for many years to infer basic information about satellites; however, there has been limited success at remotely determining satellite surface materials, and the variability of brightness and spectral energy distribution of satellite reflections complicates satellite identification. This paper demonstrates the potential utility of event-based sensors for remotely characterizing satellites based on the reflectance properties of their surface materials. Event-based sensors offer three important advantages over traditional frame-based sensors, such as charge-coupled devices (CCDs) for characterizing satellite materials on orbit: very high temporal resolution, high dynamic range, and low data rates. This allows rapid, fine-resolution measurements over a broad range of intensities. An event-based camera was used to characterize the broadband reflectance properties of five common satellite materials over a range of illumination and observation angles in the laboratory. Some of the results are very distinctive, and have not previously been reported, demonstrating that event-based sensors might perform better than CCDs at satellite identification and material characterization. The results also show that different materials can exhibit quite different, and sometimes very distinctive, illumination/observation geometry-dependent reflectance characteristics. Using high angular resolution event-based data to assess broadband reflectance changes with changing geometry could be an effective means of unambiguously identifying satellites or determining the presence of specific satellite surface materials

    Shack-Hartmann wavefront sensing using spatial-temporal data from an event-based image sensor

    No full text
    An event-based image sensor works dramatically differently from the conventional frame-based image sensors in a way that it only responds to local brightness changes whereas its counterparts’ output is a linear representation of the illumination over a fixed exposure time. The output of an event-based image sensor therefore is an asynchronous stream of spatial-temporal events data tagged with the location, timestamp and polarity of the triggered events. Compared to traditional frame-based image sensors, event-based image sensors have advantages of high temporal resolution, low latency, high dynamic range and low power consumption. Although event-based image sensors have been used in many computer vision, navigation and even space situation awareness applications, little work has been done to explore their applicability in the field of wavefront sensing. In this work, we present the integration of an event camera in a Shack-Hartmann wavefront sensor and the usage of event data to determine spot displacement and wavefront estimation. We show that it can achieve the same functionality but with substantial speed and can operate in extremely low light conditions. This makes an event-based Shack-Hartmann wavefront sensor a preferable choice for adaptive optics systems where light budget is limited or high bandwidth is required

    Event camera simulator improvements via characterized parameters

    Get PDF
    It has been more than two decades since the first neuromorphic Dynamic Vision Sensor (DVS) sensor was invented, and many subsequent prototypes have been built with a wide spectrum of applications in mind. Competing against state-of-the-art neural networks in terms of accuracy is difficult, although there are clear opportunities to outperform conventional approaches in terms of power consumption and processing speed. As neuromorphic sensors generate sparse data at the focal plane itself, they are inherently energy-efficient, data-driven, and fast. In this work, we present an extended DVS pixel simulator for neuromorphic benchmarks which simplifies the latency and the noise models. In addition, to more closely model the behaviour of a real pixel, the readout circuitry is modelled, as this can strongly affect the time precision of events in complex scenes. Using a dynamic variant of the MNIST dataset as a benchmarking task, we use this simulator to explore how the latency of the sensor allows it to outperform conventional sensors in terms of sensing speed
    corecore