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Earth orbit is a limited natural resource that hosts a vast range of vital space-based

systems that support the international community’s national, commercial and defence

interests. This resource is rapidly becoming depleted with over-crowding in high demand

orbital slots and a growing presence of space debris. We propose the Fast Iterative

Extraction of Salient targets for Tracking Asynchronously (FIESTA) algorithm as a robust,

real-time and reactive approach to optical Space Situational Awareness (SSA) using

Event-Based Cameras (EBCs) to detect, localize, and track Resident Space Objects

(RSOs) accurately and timely. We address the challenges of the asynchronous nature

and high temporal resolution output of the EBC accurately, unsupervised and with few

tune-able parameters using concepts established in the neuromorphic and conventional

tracking literature. We show this algorithm is capable of highly accurate in-frame RSO

velocity estimation and average sub-pixel localization in a simulated test environment

to distinguish the capabilities of the EBC and optical setup from the proposed tracking

system. This work is a fundamental step toward accurate end-to-end real-time optical

event-based SSA, and developing the foundation for robust closed-form tracking

evaluated using standardized tracking metrics.

Keywords: event-based, tracking, space situational awareness, machine learning, neuromorphic, image

processing

1. INTRODUCTION

The near-earth space environment is an expansive but ultimately limited natural resource. This
vantage point hosts a wide range of vital commercial, civil, and defence systems. As the space
environment becomes more congested, the risk of collision increases, threatening a runaway rate of
collisions that could render large regions of space unusable and be especially hazardous for crewed
missions (Kessler and Cour-Palais, 1978). Although satellite motion models are well-understood,
gradual changes to the orbit of RSOs occur due to atmospheric drag, collisions, unaccountable
human error, deliberate actions, or other unexplained phenomena. Detecting and responding to
these changes and anomalies in a timely manner is a vital step required to mitigating future
collisions (Fujimaki et al., 2005). Space Situational Awareness (SSA) are critical techniques aimed at
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mitigating hazards to on-orbit systems by monitoring satellite
traffic with accurate and timely data so we can continue to
utilize the space environment in a sustainable way (Bobrinsky
and Del Monte, 2010).

SSA operators use various systems to detect and observe
RSOs actively or passively by sensing RSO emitted or scattered
electromagnetic radiation across much of the electromagnetic
spectrum. The performance and suitability of the various
detection strategies, mostly in radar and optical regimes, differ in
their ideal operating conditions, respective atmospheric opacity,
detection limits, and the desired SSA task (Donath et al., 2010).
Using an optical approach, SSA becomes a difficult vision task
of high-speed target detection in low light, low Signal-to-Noise
Ratio (SNR) conditions, with high accuracy requirements and
complex scene dynamics due to stochastic atmospheric processes.
However, with these challenges comes the advantage of intuitive
data output, passive operation, and relatively low cost and power
requirements compared to other techniques such as radar. As
optical observation is inherently passive, the target or other
observers are not directly aware of the observation. In contrast
to active observation, the observer emits radiation to be scattered
by a target which can then be detected. However, optical sensing
techniques are inherently limited to observing during the night
with clear weather conditions and are subject to atmospheric
distortion.

Optical data collection acquires image frames using a
telescope setup over a pre-determined exposure period to gather
sufficient light to detect an RSO (Weeden et al., 2010). During
these integrated exposures, a target RSO is carefully tracked
by the telescope mount and control system to keep it within
the Field-of-View (FOV) long enough to accumulate sufficient
light for successful target detection. Collecting RSO position
data from optical images is a well-studied detection problem of
locating the center of an RSO from the target’s apparent flux
within the image frame (Zimmer et al., 2018). The position
of the detected RSO and the time of the exposure can then
be used for Orbit Determination (OD) to update or create the
target’s Two-Line Element Set (TLE) in a catalogue for future
observation, ephemeris prediction, propagation, and ongoing
satellite conjunction analysis (Ender et al., 2011).

Recently, a new and unique optical imaging paradigm for SSA
is emerging with the ongoing development of the neuromorphic
EBC. These so-called “event-based” sensors make it possible to
observe and track targets asynchronously while adapting to the
visual dynamics of the scene. This is accomplished by leveraging
the high temporal resolution, high dynamic range, low power
and low latency of the EBC (Patrick et al., 2008; Gallego et al.,
2019), as shown in Figure 1. Many of these advantages align
well with the characteristics of SSA as an imaging task, which
is highly sparse with the background sky being mostly free of
stimulus, with exception to background point-like astrophysical
objects such as stars. Recent research using EBCs for SSA have
demonstrated and assessed the capabilities of EBCs mounted
on terrestrial telescopes for imaging astrophysical objects and
RSOs in various orbits (Cohen et al., 2019), in various observing
conditions (Ralph et al., 2019), and the potential for SSA from
on-orbit (Roffe et al., 2021).

Optical SSA using EBCs is a significantly different process
to conventional optical SSA. Instead of exposing a sensor for a
predefined period to accumulate light from a scene, an EBCs
sensor array is always exposed to the scene, producing near-
microsecond asynchronous binary contrast “events” whenever
a pixel experiences a temporal change in light contrast. Such
changes in illumination can be caused by the apparent motion of
an RSO or atmospheric scintillation. This asynchronous event-
based vision data cannot be used directly by conventional optical
detection or tracking methods, given the EBC produces no
frames and does not typically contain pixels that can measure
light intensity. The consequence of the high temporal resolution
and frame-free operation is that RSO detection becomes a
problem of tracking a target in real-time as it moves within a
telescope’s FOV.

1.1. Conventional Target Tracking
Tracking is the process of locating a target within a scene
successively in time. This process is a crucial component of
many autonomous systems that comprises target detection, data
association, and target state estimation (Blackman and Popoli,
1999). The general aim of tracking is to successively estimate
the state of a target over time. This state is represented as a
random variable and is modeled by observing it, or a sequence
of other random variables associated with it, as observations
(Wang et al., 2017). Tracking becomes a difficult task in the
presence of an unknown and time-varying number of targets.
Among these potential targets are also measurements which
could be noise or clutter (Luo et al., 2020). The solutions in the
conventional tracking literature vary, but are primarily based on
mathematically rigorousmethods with varying levels of statistical
optimality. Most tracking methods use combinations of data
association algorithms and state estimators, which resemble some
recursive Markov-Bayesian process such as a Kalman or particle
filter (Li et al., 2017).

Many Single Target Tracking (STT) and Multiple Target
Tracking (MTT) algorithms have been developed. The simplest
approach in basic applications is the Global Nearest Neighbour
(GNN) tracker (Blackman and Popoli, 1999). GNN trackers
perform state estimation by associating measurements to their
nearest track based on a distance metric as the most probable
data association. These techniques are very fast, simple to
implement and MTT capable, but cannot correctly propagate
the state and measurement uncertainty forward in time.
This trade-off leads to GNN trackers being susceptible to
noise and not properly accounting for the overall uncertainty
of the track. This characteristic can lead to unrecoverable
incorrect measurement-to-track association hypotheses (Smith
et al., 2019). Many conventional computer vision trackers and
neuromorphic trackers use the GNN for speed and simplicity, but
at the cost of poorer track precision and less robust operation in
the presence of noise and uncertainty.

The general solution to obtaining statistical robustness and
precision are tracking and filtering algorithms that accommodate
all measurements’ hypotheses and respective uncertainties.
Algorithms such as Probabilistic Data Association (PDA) (Bar-
Shalom et al., 2009), Joint Probabilistic Data Association (JPDA)

Frontiers in Neuroscience | www.frontiersin.org 2 May 2022 | Volume 16 | Article 821157

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Ralph et al. Event-Based Feature Consolidation and Tracking for SSA

FIGURE 1 | Comparison between conventional imaging (A), event-based vision for space imaging, and SSA tasks. Sub-figures show the event-based output of the

Moon (B), Saturn (C), and Jupiter (D) through a telescope. Figure from Afshar et al. (2020).

(Bar-Shalom and Tse, 1975), Multiple Hypothesis Tracker
(MHT) (Blackman, 2004) and Probabilistic Multiple Hypothesis
Tracker (PMHT) (Streit and Luginbuhl, 1995), solve this problem
in varying ways by calculating all possible track hypotheses
(including miss detection hypotheses) as distributions weighted
by their respective time-varying likelihoods and measurement
association probabilities. The PDA STT and JPDA MTT
extensions are simple, but effective tracking algorithms of this
class which have been shown to outperform the typical GNN
tracking approach seen in many fundamental conventional
and event-based tracking papers (Bar-Shalom and Li, 1995).
Similarly, the MHT algorithm is a statistically optimal and
more accurate MTT tracker than PDA and JPDA, but with a
higher computational cost (Smith et al., 2019). These algorithms
(particularly MHT), can quickly become intractable without
significant hypothesis reduction because of the need to consider
all possible track state hypotheses (Vo et al., 1999). This article
aims to demonstrate how the event-based sensing paradigm
has significantly different requirements and assumptions than
conventional sensing, which can render simple trackers such as
PDA highly effective.

Target models are also well-studied with point model
architectures assuming a single-pixel size constraint on targets.
Extended target models, however, can accommodate targets
that can potentially produce multiple measurements at once
(Granstrom et al., 2016). Extended tracking improves optimality
with spatially distributed targets, especially with event data, since
events do not necessarily represent a target’s center of mass.

New development of novel filtering and estimation
approaches have used algorithms such as Probability Hypothesis
Density (PHD) (Mahler, 2003), Gaussian Mixture Probability
Hypothesis Density (GM-PHD) (Vo and Ma, 2006), and Poisson
Multi-Bernoulli Mixture (PMDM) filters (Mahler, 2014). These

algorithms belong to a relatively new family of tracking and
filtering methods based on Finite Set Statistics (FISST) which
avoid explicit measurement-to-track association by representing
tracks using random finite sets (RFSs) (Mahler, 2007b) and can
be extended to model the number of trackable targets within
the scene (cardinality) (Mahler, 2007a). While these algorithms
present new and promising tracking alternatives to traditional
Monte Carlo methods (Wang et al., 2017), they are beyond the
scope of this article, as we focus here on exploring foundation
methods of tracking in event-based sensing to formulate a
statistically robust tracking framework from first principles.

Many of the foundation tracking publications detailed above
use simulated data to evaluate their respective tracking algorithm.
This approach helps to separate the accuracy and performance
of the respective sensing system from the performance of
the proposed tracker. Tracking performance with simulated
and real-world data is evaluated using measures such as
localization error, precision (Luo et al., 2020) and measurement-
to-track assignment metric analysis such as Generalized Optimal
SubPattern Assignment (GOSPA) (Rahmathullah et al., 2017).

While well-established tracking and state estimation
algorithms exist in the conventional tracking literature, these
algorithms are not directly applicable to event-based sensing.
Conventional tracking algorithms applied to event-based
data often require significantly more computational resources
compared to event-based processing strategies since the former
is not designed to correctly process the asynchronous, high
temporal resolution, and event-driven output of the EBC.

1.2. Neuromorphic Event-Based Target
Tracking
Event-Based (EB) algorithm design and raw data processing
methods are often specifically tailored to particular objectives
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(Lakshmi et al., 2019). Currently, few EB algorithms exist for
SSA purposes. New event-based algorithms are particularly
challenging to design as the EB imaging paradigm is far removed
from conventional frame-based vision. Various methods in the
neuromorphic literature seek to represent and analyse event-
based data in different manners, including using intervals of
accumulated events into some frame as in conventional vision,
or on the raw event-stream in a “neuromorphic” fashion.
Algorithms designed to process EB data must be able to take full
advantage of the benefits offered by the EBC, namely the high
temporal resolution and asynchronous operation. A high-speed
and accurate tracking algorithm “HASTE” (multi-Hypothesis
Asynchronous Speeded-up Tracking of Events) (Alzugaray Lopez
and Chli, 2020) has been recently shown to address many of these
challenges. The authors explore the trade-off between rigorous
state estimation and individual event processing while operating
at real-time and on an event-by-event basis using a novel
asynchronous patch-feature tracker that uses pre-learned feature
templates. Pre-learned features are problematic for systems
such as SSA, where it is desirable to operate without priors
on the ideal spatio-temporal features that represent trackable
targets since target appearance is rarely known and can vary
based on tumble rate, illumination angle, material composition,
atmospheric seeing conditions and orbital regime.

EB tracking and detection algorithms began with simple
conventional computer vision detection of elementary shapes,
and often used basic clustering or GNN-like strategies to
associate events to tracks. These approaches included detecting
and associating blobs (Delbruck and Lichtsteiner, 2007), lines
(Everding and Conradt, 2018), Hough-transform extracted
features (Ni et al., 2012), hand-crafted shapes, kernels and mean-
shift (Lagorce et al., 2014), parts-based models (Valeiras et al.,
2015). Broadly, these algorithms are all based on well-founded
computer vision algorithms. A significant body of the literature
also focuses on corner detection, employing well-established
Harris and FAST key-point trackers (Alzugaray and Chli, 2018).
Various optical flow estimation algorithms (Benosman et al.,
2013) have also been proposed, which can be used to form
the basis of a tracking algorithm. Machine learning approaches
to tracking by detection have also been proposed, largely
using GNN strategies or learned associations with supervised
and unsupervised feature extraction for measurement detection
(Lagorce et al., 2015; Afshar et al., 2019b). These algorithms
operate on various representations of events, such as integrated
frames, volumes (Wes Baldwin et al., 2021), graphs (Bi et al.,
2020), and “time-surfaces” (Clady et al., 2015; Afshar et al.,
2019a).

Many neuromorphic tracking algorithms utilize the Kalman
filter or Markov-Bayes recursion for track state estimation.
However, few use the previously described statistically robust
trackers from the conventional tracking literature. Some
examples of their use include the development of GM-PHD
tracking (Foster et al., 2019) and MHT (Cheung et al., 2018).
These algorithms operate on event clusters accumulated over
time and accumulated frames of event-based data respectively.
Additionally, GM-PHD has been designed to operate on
normalized event-maps (Chen et al., 2020). A statistically robust

tracker in the neuromorphic literature, also termed probabilistic
data association, has been proposed (Zhu et al., 2017) as an
expectation-maximization algorithm for optical flow, not to be
confused with the established PDA tracker of the same name.

While many neuromorphic tracking algorithms are fast and
accurate within the context of their respective applications,
few are fully real-time or operate using the detailed state
estimation techniques found in the conventional tracking
literature. Although some of the articles discussed use Kalman
filtering or a similar type recursion for track state estimation,
track and measurement uncertainties are not fully taken into
account without a more statistically robust solution such as
PDA or JPDA. These algorithms are capable of accounting for
all track hypotheses and fully propagate uncertainty into future
time steps. Correct propagation of these uncertainties is key
in SSA (Jones et al., 2015) since orbital uncertainty estimation
underpins the effectiveness of many operational SSA activities
such as orbit determination and conjunction assessment (Poore
et al., 2016; Hilton et al., 2019). Statistically robust solutions
aside, many trackers in the event-based literature also suffer poor
robustness and adaptability to scene changes, with many hard-set
and hand-tuned priors, and feature templates that are dependent
on the scene or are task-dependent parameters. Many systems
filter events, integrate events into structures (such as frames),
or voxels, or do not fully characterize performance time for
general application. Despite the variety of tracking approaches,
learning-based feature detection and tracking methods also offer
considerable “room for research” (Gallego et al., 2019).

1.3. Event-Based Space Situational
Awareness
Early work in EBCs for SSA and astronomy has led to the
development of event-based star trackers; devices typically used
for spacecraft attitude estimation based on pattern recognition
of background stars. Chin et al. (2019) leveraged the benefits
of an EBC to perform high speed (although not real-time) and
low power star tracking using a custom build data pipeline and
a physically simulated star tracking dataset. Event-based SSA
tracker systems have featured tracking algorithms which use
elementary detection techniques such as Hough line detection on
multi-scale fixed length streams of events as “chunks” (Bagchi
and Chin, 2020) and detection via feature extraction on an
event-by-event basis (Afshar et al., 2019b). Tracking has been
performed using principled probabilistic MHT on frames of
events (Cheung et al., 2018) at 25 Frames per Second (FPS) using
Matlab. Using Poisson priors for the MHT requires 30 min to
process 10 s of data using a Matlab implementation. Evaluations
in Afshar et al. (2019b) and Cheung et al. (2018) were conducted
using non-typical conventional tracking metrics, with Afshar
et al. (2019b) using sensitivity and informedness and Cheung
et al. (2018) with visual confirmation.

Despite the capabilities and novelty of the EBC, event-based
SSA tasks are still a difficult vision problem. EBCs are noisy
(Gallego et al., 2019), and when operating in low light conditions,
EBCs produce a highly sparse event bandwidth in the order of
50,000 Events per Second (EPS). In especially difficult low-light
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conditions, noise levels can reach 400,000 EPS and the prevalence
of “hot pixels” can become higher. Low-light blurring effects have
also been observed as the result of delayed events known as “wake
measurements” (Bar-Shalom and Tse, 1975) occurring behind
targets in the scene, raising an “out-of-sequence measurement”
problem. These challenges are exacerbated by the common
practice of tuning EBC biases to maximize signal at the cost
of increased noise levels. Conventional imaging techniques that
integrate light over an exposure period often have a sensitivity
advantage over EBCs since they can accumulate significantly
more light and store intensity values at the pixel. Therefore, to
use an EBC effectively for SSA, event-based observation systems
and algorithms must take full advantage of the highly rich spatio-
temporal information in the absence of intensity information.
The combined challenge of processing event-based data properly
and operating at a sufficient speed for SSA, is pushing the limits
of the current EBCs and event-based algorithms. Few algorithms
in the literature currently operate with the capabilities required to
fully utilize an EBC for SSA. A clear trade-off exists between SSA
capable tracking algorithms that usemathematically rigorous and
accurate conventional Markov-Bayesian trackers with few tune-
able parameters at high computational cost, and the high-speed
low-cost computer vision style algorithms in the neuromorphic
literature.

1.4. Contributions
In this article, we propose the FIESTA algorithm as a real-
time and robust approach to event-based SSA tracking tasks.
This algorithm addresses the challenges of processing the
asynchronous and high temporal resolution output of the EBC
accurately and efficiently. We successfully use an unsupervised
approach to tracking-by-detection with few tune-able parameters
and using concepts established in the neuromorphic and
conventional tracking literature. FIESTA achieves real-time
performance by operating asynchronously on the event basis
and only utilizing events which represent potentially trackable
targets detected by a novel feature consolidation algorithm. Using
these strategies, the proposed algorithm can greatly reduce the
computational and storage cost of a typical optical SSA system.

The functions and capabilities of FIESTA address one of
the critical challenges in event-based sensing: the relevance
of the individual event to tracking. We address this issue
not through the integration of events using a static time
interval or frame but instead using FIESTA to accumulate event
information dynamically over time, in both the feature extraction
and the tracking phase. We make full use of EBC data in a
mathematically robust and closed-form solution to SSA state
estimation by developing an asynchronous PDA algorithm.Using
this algorithm, we explore the paradigm shift of event-based
sensing embedded in an “interacting tracker-detector” feature
consolidation system.

By exploring alternate approaches to unsupervised feature
extraction and conventional interacting tracking, we developed
the FIESTA algorithm with capabilities that support the SSA
mandate of timely collection of accurate data on the space
environment. We show that correct handling of high-temporal
resolution and asynchronous EBC data, the asynchronous

properties can lead to accurate RSO state estimation with a
microsecond range latency even with a simple tracking algorithm
such as PDA. Using FIESTA, we also show the EBCs capability
to produce accurate “in-frame” (within the spatial foot-print of
the pixel array) velocity estimation. This is usually a difficult
SSA task using conventional image exposures which have limited
temporal resolution. Although the EBC cannot measure absolute
light intensity for spatial fitting, we leverage the high temporal
resolution of the EBC to produce significantly more data points
for position fitting than a single conventional image exposure.
This proposed algorithm is the first example in the neuromorphic
literature capable of unsupervised, robust and real-time tracking
for SSA that leverages conventional and neuromorphic methods.
In this article, We work to develop a foundation of conventional
STT event-based tracking. Future work will involve developing
additional tracking algorithms within FIESTA to perform a full
suite of SSA tracking tasks with MTT capability.

2. FEATURE EXTRACTION IN
EVENT-BASED SENSING WITH FEAST

Tracking-by-detection is a common trackingmethod of detecting
targets independently at each time step, then associating these
targets over time to produce a track. An event-based detector
or feature extractor for SSA tracking must handle the noisy
output of the EBC in low light conditions, the characteristic high
event rate and the low information capacity of an individual
pixel. Event-based feature extraction using learning rules such as
Spike Timing Dependent Plasticity (STDP) (Yousefzadeh et al.,
2017) are often used to extract features while filtering noise.
Feature Extraction using Adaptive Selection Thresholds (FEAST)
(Afshar et al., 2020) is a simple and effective unsupervised feature
extraction algorithm that has been previously used as for SSA
tracking using the tracking-by-detection framework. FEAST runs
on an event-by-event basis and can be used to extract salient
features from the event-stream which may represent trackable
targets. Based on hardware efficient models of STDP (Afshar
et al., 2014, 2015; Sofatzis et al., 2014), the FEAST algorithm is
a hardware-optimized model of feature extraction in a spiking
neural network. Combined with a tracking algorithm, FEAST can
be modified to remove the reliance on prior tracking information
by detecting saliency and only tracking meaningful events, which
significantly improves efficiency as only the detected salient
events are processed by the downstream components of FIESTA.

2.1. Event-Based Vision Sensors
The EBC was developed as an analogue model of the first
stages of retinal processing, and built using neuromorphic
principles (Delbruck and Mead, 1994; Patrick et al., 2008).
In conventional imaging, sensors acquire a representation of
the visual field as a frame of pixels acquired on a regular
exposure interval. These frames are generated by synchronized
integration at every pixels at a constant frame rate which are
prone to blurring and saturation effects. The EBC, however,
employs a drastically different imaging paradigm. Instead of
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producing image frames, the EBC uses an array of photo-
receptors to produce representations of the visual scene from an
asynchronous stream of “pixel events” triggered by logarithmic
contrast changes detected at the pixel level (Lagorce et al., 2014),
as shown in Figure 2.

The output of an event-based camera is a continuous stream
of events e, with the following form:

ei = [ui, ti, pi]
T i ∈ N

+, (1)

Where ui = [xi, yi] denotes the location of the pixel, p ∈

{+1,−1} the polarity of the change in illumination, and t the time
at which the event occurred.

Adopting a similar notation to that used in Clady et al. (2015),
we define the function 6e to map a time t to each 2D spatial
coordinate ui:

6e : R
2 → R

ui : t = 6e(ui) (2)

and a similar function Me to map the polarity to each spatial
coordinate:

Me : R
2 → {−1, 1}

ui : p = Me(ui). (3)

As time is inherently a monotonically increasing function,
the function 6e defined in Equation (2) describes a
monotonically increasing “surface”.

2.2. Time-Surface Calculation
A rich and descriptive feature representation called a “time-
surface” (Delbruck, 2008; Afshar et al., 2019a) can be extracted
from the event-stream to represent the features in the underlying
visual scene.

Equations (2) and (3) create a 2D surface where τ defines the
duration or “life-time” over which an event will have a non-zero
value on the surface. The actual value for τ is a free parameter
dependent on the application and nature of the visual field.

The exponentially decaying time-surface5e(ui, t), weights the
information carried by each event and is decayed toward zero
over time. This surface is analogous to a high-pass filter:

5e(ui, t) = {Me(ui)e
(
6e(ui)−t

τ
), 6e(ui) ≤ t

0, 6e(ui) > t.
(4)

The exponential time-surface has been shown to be more
informative than the linear or the index-based time-surfaces
(Afshar et al., 2019a). Newly calculated time-surfaces are
normalized to make the system invariant to temporal scaling.
This step re-scales the time-surface values from the original time-
stamp values of the events on the surface. This normalization
allows comparisons to be performed with other time-surfaces

that may have occurred at a different time with different event
time-stamps.

Time-surfaces are typically not calculated for the whole frame,
but locally as an event-context centered on ui, given by π r

e (ui, t)
with a pixel radius r. We use an empirically determined event-
context radius of 5, which produces an 11×11 time-surface
event-context centered on the event. This is a practical choice
due to the high computational cost required to calculate a time-
surface for the full frame.When calculating an event-context with
a fixed size, events which are too close to the edge of the sensor
will encounter border issues and are discarded.

2.3. The Original FEAST Algorithm
The original FEAST algorithm functions as the basis for
generalized classification or tracking systems. In these systems,
FEAST is used to learn a series of salient features in an
unsupervised manner, such as in k-means clustering (Lloyd,
1982). During classification or tracking, features within the
scene are detected by matching them with selected prior
learned features. FEAST, solely as a feature extraction algorithm,
performs online unsupervised feature extraction using a
clustering method with an adaptive selection threshold for each
feature.

A FEAST network contains a layer of neurons ni of total N
neurons, with a feature representation (neuron weight Wi) and
an adaptive selection threshold, θi. This threshold corresponds
to the minimum similarity (cosine distance) required between
the feature and a new incoming event-context for the neuron to
update and learn.When a neuron update is triggered, that neuron
is said to “spike”. This threshold is dynamic and varies based on
two rules when the network is passed an event-context:

1. If the input event-context matches a feature ni (the lowest
cosine distance between its weights and the input event-
context) and the similarity is within the feature’s selection
threshold θi, the threshold is increased for feature ni
by a fixed amount 1i. If multiple features match the
input, the best matching feature is selected by the greatest
cosine distance/similarity. Increasing this threshold raises the
selectivity of the neuron (now inhibited) to future feature
matching.

2. If an incoming event-context does not match given a feature
ni, then all thresholds whose neurons matched to the event-
context that were also not the best matching/winning neuron
or within the selection threshold θi, have their selection
threshold’s lowered by a fixed amount 1e. Lowering this
threshold reduces the selectivity of the neuron (now excited)
to future feature matching.

In FIESTA with multiple layers, when a winning feature is
successfully matched to a FEAST neuron, it spikes and generates
an “event” for the next layer. The winning neuron learns the input
event-context by updating the neuron feature weights with a fixed
learning rate η as follows:

Wn = (1− η)Wn + ηπ r
e (ui, t), (5)
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FIGURE 2 | A demonstration of an event-based vision from Lichtsteiner et al. (2008), where a “rotating dot stimulus” will produce a continuous stream of events with

high temporal resolution, where a frame-based system would instead produce image frames in discrete sample intervals.

Where Wi denotes the weight of feature neuron ni, to which the
input event-context π r

e (ui, t) (of the wider time-surface5e(ui, t))
is successfully matched. The FEAST algorithm is summarized in
the Supplementary Materials.

The output of the network is in the form of ej = [Wi, ui, t]T

where t represents the time at which the original event occurred,
that is, it remains unchanged from the input. Additionally, a
flag is raised by the network to indicate that a given event-
context caused a neuron to spike. The FEASTs strategy is to
skip events that do not fall within a neurons distance threshold,
which are therefore not yet considered informative to the current
feature set, while still modifying neuron thresholds to increase
receptivity. Under this learning rule, the number of feature events
j will likely be lower than the total number of input events i.
The output of FEAST is now significantly smaller than the full
spatio-temporal feature space of the raw event-stream.

2.4. Online and Unsupervised Multi-Stage
Feature Extraction and Consolidation in
Real-Time
In this article, we demonstrate FIESTA as a novel and
unsupervised feature consolidation algorithm to dynamically
learn salient features occurring in the event-stream. This feature
consolidation algorithm comprises a series of FEAST networks
arranged as cascaded low-pass filters in a feed-forward multi-
layer configuration. We use the spiking of FEAST neurons in
FIESTA to indicate that a salient feature is developing at the
spiking event’s location. This salient feature may represent a
trackable target and is, therefore, a reasonable input for a tracking
algorithm. In our approach, we train and run FIESTA online and
in real-time.

To operate as an unsupervised and online tracking pre-
processor with feature consolidation, FIESTA needs a balance
between reacting to fast-occurring features while learning stable,
slower developing features. This is difficult to achieve using a
single FEAST network: slow learning rates will cause neurons to
be react slowly whilst producing stable features. Alternately, high
learning rates produce high plasticity and reactive extraction,
but with a tendency to model poorer and less stable features.
By taking inspiration from the workings of the hippocampus
(Soldado-Magraner et al., 2020; Finnie et al., 2021), the balance

between two such network behaviors can be struck by cascading
feature extractors to form a feature consolidation network,
as shown in Figure 3. The networks required in a feature
consolidation network can be based on FEAST networks,
but with different inputs and hyper-parameters. Combined
with a simple activity measure filtering (discussed further
in this section), these multi-stage FEAST networks form the
feature extraction component of FIESTA. This alternate feature
extraction approach significantly raises the effective SNR of the
processed input event data by propagating the most salient
spatio-temporal features to the tracker stage of FIESTA without
the need for an explicit prior on the characteristics of trackable
features.

The multi-stage feature extraction and consolidation network
used in this article is comprised of two small FEAST networks
containing only 9 neurons, and a single FEAST “track neuron” in
a feed-forward arrangement. The first FEAST network is the Fast
Adapting Network (FAN), and is comprised of neurons with a
high learning rate to adapt to rapidly changing salient features
and to constantly re-assign neurons with newly appearing
features. If a neuron in this network spikes, the spiking neuron’s
weight is propagated to the second feature consolidation FEAST
network, rather than activation as in conventional systems. This
second network is the Slow Adapting Network (SAN) which
learns slow-changing features from the FAN neuron weights
instead of the event-stream. The tracker is given the event tuple
of the current tracker update interval as the measurement of the
current tracker index/scan k on the spiking of a SAN neuron and
the SAN neuron weight.

In FIESTA, we aim to track the most salient feature without
priors and in a less feature-specific approach to typical detectors.
Along with FIESTA network activity, we assess the saliency and
suitability of a feature by calculating the general “activity” of a
feature. As shown in Equation 6, this activity measure is given
by the sum of all elements of within an event-context or the
winning neuron ni weight matrix Wi, and determining whether
the activity sum is within the range of an activity threshold δ:

∑

i

Wi ≥ δ (6)
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FIGURE 3 | Comparison of conventional feature extraction and feature consolidation in FIESTA. In our novel feature consolidator, feature weights learned by the FAN

are consolidated into the long-term SAN for later processing. This approach is as an alternative to the conventional approach of extracting features over multiple layers

using feature convolutions or neuron activation.

Although simple, this measure is unsupervised and sufficiently
general to operate across multiple sensing environments.
The computational simplicity of this method facilitates real-
time operation. Additionally, this method simplifies the usual
approach of having a prior on the “type” of feature to track.
Instead, we focusing on “recent” activity and spatio-temporal
feature structure as a proxy for saliency.

Similar activity, saliency and background noise filters are
common tracker components in neuromorphic literature.
Examples include band-pass filtering in the frequency domain
(Scheerlinck et al., 2019), Leaky Integrate and Fire (LIF)
neuron based filters of Surface of Activated Events (SAE)
with frequency thresholding (Wan et al., 2021), spatio-
temporal neighborhood filtering by examining the density of
surrounding events (Feng et al., 2020) and biologically inspired
multi-layered receptive fields for filtering and compression
(Barrios-Avilés et al., 2018). While these methods each
present many advantages, the focus of FIESTA is to reduce
processing time and requires highly simplified filters. Such
a filter needs to be computationally inexpensive, intuitive
and capable of integration throughout FIESTA without any
additional processing beyond the filter calculation itself. The
simple summing operation of the proposed filter achieves
this goal as a low cost operation that can be conducted
on any event-context or neuron weight in FIESTAs various
stages.

In FIESTA, the activity measure is first calculated for all
event-contexts, and proceeding each FEAST layer in the feature
consolidation network. Activity thresholding of the event-
context removes contexts which contain too few recent events
that likely represent a featureless noisy region or a region with
independent and constantly spiking “hot-pixels”. In event-based
SSA, bias settings are often tuned to raise the SNR of the
event-stream at the cost of noise. These bias configurations
often produce higher noise in low activity regions and increased
prevalence of hot pixels. This practice further highlights the
importance of a filtering mechanism in an event-based SSA
algorithm.

3. ASYNCHRONOUS PROBABILISTIC DATA
ASSOCIATION FILTERING AND TRACKING

The tracking component of FIESTA consists of a modified
asynchronous PDA tracker (Bar-Shalom and Tse, 1975). This
tracker accepts salient events as measurements from the FIESTA
feature consolidator and operates in real-time, online, and
unsupervised. We define an event as salient when the local
event-context passes all filtering, activity thresholding, and spikes
both the FAN and SAN. Here, we outline the principles of
conventional tracking, the alternate paradigm of event-based
tracking, and the proposed asynchronous PDA tracker.
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FIGURE 4 | The tracking problem of estimating unknown target states xk ,

given incomplete measurements zk , at tracker time step k, in the presence of

clutter measurements.

3.1. Principled and Conventional Tracking
Tracking is a general assignment problem, where targets within a
scene are associated to sensor measurements over time to form
“tracks”. As shown in Figure 4, the tracking problem is a task
of observing some unknown stochastic target state Probability
Density Function (PDF) xk at a discrete time step or “scan”
k, given some imperfect sensor measurements or observations
z1 : k within a measurement volume or FOV. Conventional
trackers use assumed density filtering based on the Chapman-
Kolmogorov Equation and Bayes’ rule update to recursively
refine the random target state estimate xk, given measurement
information at each time step (Särkkä, 2013):

p(xk|z1 : k−1) =

∫

p(xk|xk−1)p(xk−1|z1 : k−1)dxk−1 (7)

p(xk|z1 : k) =
p(zk|xk)p(xk|z1 : k−1)

∫

p(zk|xk)p(xk|z1 : k−1)dxk−1
(8)

By estimating these state densities, conventional filter-based
trackers can model complex systems and how a target’s state
evolves over time. Trackers in the neuromorphic literature
typically use either GNN type trackers or will operate without
state estimators. These approaches do not optimally estimate
target state or predictions densities. While computationally
inexpensive, GNN tracker estimates a global hypothesis
for target states by associating target measurements based
simply on the closest spatial measurement or the most
probable measurement association. State estimation is then
conducted using this measurement-to-track association without
propagating all system uncertainties or alternate hypotheses
(such as miss-detection), into future time steps.

Modern trackers perform track maintenance to manage tracks
and their life cycle throughout each time step, as summarized
in Figure 5. In these track maintenance systems, tracks are first

FIGURE 5 | The established life-cycle of a track from initiation to deletion, as

managed by track maintenance.

initialized when a new measurement is received by the tracker
and it cannot be associated to any existing track. In this case, a
new “tentative” or “un-confirmed” track is initialized. Tentative
tracks could represent a true target, or a false target if it was
associated to a “clutter” measurement or false alarm. A tentative
track becomes “confirmed” once sufficient measurements or
“evidence” is collected to confirm that it represents a genuine
target. Without a measurement association in a given time
step, a track is said to be “coasted”, where the track’s state
update is calculated based on its previous state prediction. If
a track (confirmed or tentative) is not continually associated
with sufficient measurements or becomes unlikely to represent
a genuine target, it is deleted or “pruned”.

In tracking by detection, a detection process determines
whether a given measurement originates from a target in the
FOV and an association process determines which track a given
measurement represents. For a measurement to be associated
to a track, an assignment algorithm is used to build a set of
data association hypotheses by calculating the assignment cost
between all measurements at time k and all tracks n. This
assignment task is a critical component of any conventional
tracker and comprises a large part of the computational burden
of tracking algorithms.

Broadly, “hard” Euclidean distance and “soft”
elliptical/Mahanalobis distances are used to calculate assignment
cost (Chen et al., 2002). Elliptical Mahanalobis distance
association is the preferred approach as it bases association
cost on the actual dynamics and uncertainties of the tracked
target given the target covariance. This technique is contrasted
to the less than ideal hard Euclidean distance calculation for
assignment cost. Hard distance calculations are common place
in neuromorphic literature due to their simplicity. This practice
is also out of necessity since many such algorithms do not
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estimate state covariances, and cannot calculate soft distance
costs as a result. Measurement gating is also often performed
in the assignment step to identify and disregard spurious
measurements (Wang et al., 2002). Measurements are usually
gated if the assignment cost is too high and are unlikely to
represent a true target.

The quantity and quality of measurement evidence
accumulated by each track in the track manager can be
calculated by various means, namely probability based logic,
m/n (the ratio between the number of target associations and
total measurements) history-based logic, and score-based logic.
History-based assessment examines the number of measurement
associations per total number of measurements over some
time step interval. Probabilistic logic takes the likelihood of the
track into account, where a low likelihood (high covariance)
indicates a poor track. Score based logic is recognized as the
best performing method (Blackman and Popoli, 1999) which
combines metrics from target kinematics and task specific costs
such as target intensity (in the case of optical systems) to generate
a generic track logic score. In this STT version of FIESTA, we
use history-based track logic due to the low computational cost,
easily interpreted thresholds and simple implementation into the
event index time step intervals used in FIESTA.

3.2. Conventional Tracking in the
Event-Based Paradigm
Event-based sensing is a major paradigm shift in visual sensing
and tracking. This shift necessitates several significant changes
that conventional trackers must address to process event data
optimally. These changes are caused by the asynchronous and
parallel pixel read-out operations of the sensor. Events are only
produced by activity changes in the scene with no guarantee
of a new event at each time step. In some high activity cases
however, the EBC can produce simultaneous events with the
same time-stamp, but separate event indices ei.

To appropriately handle event-based data, we track
asynchronously by only updating tracks once an event
is generated and when it passes the filtering and feature
consolidator stages of FIESTA. This approach is fully event-
based and efficient, since such a tracker processes updates
proportional to the event-rate and the saliency of the global
time-surface. Given the nature of the EBC and since FIESTA
filters the event-stream, there is no guarantee that an identical1t
occurs between each event after the filtering stage. Rather than
defining a constant number of events or a constant time step over
which to update the tracker state estimator, the tracker is updated
as soon as a relevant feature is consolidated and extracted from
the event-stream. Since state densities are updated for each
event, a significant 1t will result in state updates occurring
inconsistently. These effects may not be noticeable, as the 1t
between each system time step k of the tracker is in the order of
milliseconds in the worst case. It is important to note that the
tracker system time step k (a convention in tracking literature)
is the index of the events reaching the tracker after the feature
extraction, not the event index of the event-stream which is the

true temporal time step in terms of clock cycles. From here, we
refer to the system time step k as the tracker update interval.

If a system can computationally afford to process each event
individually, several assumptions and constraints greatly simplify
calculations. By processing on the “event basis”, the assignment
problem (for STT) becomes a one-to-one assignment, and in
MTT just a one-to-many assignment. Abiding by this constraint
in FIESTA, an association assignment is simplified to a one-
to-one assignment, whereas with a STT algorithm, the single
measurement per tracker iteration can only be assigned to a
single track. The consequence is that a track may not produce
a measurement event at each k in the presence of noise, which
will cause the track to “coast” more often, where the track state is
updated with it’s own predicted measurement in the absence of a
measurement from the sensor.

Tracking systems are designed with point or extended target
models. The model of a point target assumes that target
measurements contain no spatial information and will only
produce a single measurement per k or tracker scan. Conversely,
an extended target can produce multiple measurements which
can contain spatial information. In FIESTA, we approximate
event-based RSO tracking to point target models due to our
assumption of one event per time step and due to the comparably
low resolution of many current EBCs often leading to spatially
diverse measurements falling on the same pixel. Ideally, RSOs
would be tracked with an extended target model since RSOs are
unresolved and often extended objects, with an unknown and
varying Point Spread Function (PSF). This point target model
does however treat all measurements as representations of the
target center, despite most events originating from extended
RSOs represent an object’s flux rather than the target center.
Improvements on this approximation will be investigated in
future work with an extended object tracker.

3.3. Asynchronous PDA for Target State
and Covariance Estimation
In FIESTA, we implemented an asynchronous variation of the
PDA algorithm shown in Figure 6 to estimate the state and
covariance of single point modeled targets in the FOV based on a
events returned by the feature consolidator. PDA is a sub-optimal
Bayesian STT algorithm that merges measurement association
hypotheses weighted by association probabilities to calculate
a target state update and prediction. This approach accounts
for uncertainties in the estimated states and measurement
associations, while also propagating them forward in time. For
this reason, PDA operates significantly better than a simple
Kalman filter or GNN tracker, in the presence of noise and clutter.
The following initial assumptions are made in PDA (Bar-Shalom
and Li, 1995):

• There is only one target to track within a given FOV,
• The track is represented by a density with a known mean and

covariance (we assume linear and Gaussian),
• Measurements are independent and identically distributed

with a uniform spatial distribution,
• Measurements are either an independently occurring true

detection with probability pk
d
, or false alarms and clutter.
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FIGURE 6 | Outline of the proposed tracking component of FIESTA with the asynchronous PDA tracking recursion (orange highlight).

The proposed asynchronous PDAmakes additional assumptions,
as discussed in Section 3.1:

• Only one event can occur at a given step time k. Therefore
there can only be a single measurement per tracker scan. This
assumption is reasonable, although as mentioned, an EBC can
occasionally produce two events with different indices with the
same time-stamp,

• Tracker time steps k are asynchronous, only occurring when
an event is received by the EBC and once the event has
passed the feature consolidation and filtering stages. k here
is monotonically increasing, non-uniform and limited by the
time resolution of the EBC (∼ 10µs in the best lighting
conditions).

These asynchronous assumptions provide a more efficient means
to process event-based data using conventional tracking by easing
the computational burden of assignment. Outlined in Section 3.2,
since we assume only onemeasurement per time step, assignment
in STT and MTT cases become a task of one-to-one and one-
to-n assignment, respectively. The trade-off, however, is that all
tracks (one in our case) must be updated every time step. These
updates are not as frequent as the time resolution of the system
(or the EBC) since they occur asynchronously, and we only track
events that have passed the feature consolidator. The implications
of these assumptions are discussed in Section 6.

Since we assume linear and Gaussian models for our systems,
we implement a special case of PDAwhere prediction and update
steps can be calculated using Kalman filter recursion. The single
target posterior PDF ρ, of the tracked target at step k given

measurements from the first k to and including the k − 1 is
expressed as a Gaussian density N, given by:

ρ(xk|Z1 : k−1) = N(xk;x̄k|k ,Pk|k) (9)

where the estimated state mean x̄k|k, and covariance Pk|k is given
by,

x̄k|k = x̄k|k−1 + Kk(zk − z̄k|k−1) (10)

Pk|k = Pk|k−1 − KkHkPk|k−1 (11)

where the Kalman gain is given by Kk, and the measurement
model as Hk, which contains only terms for pixel positions. The
predicted state mean x̄k|k−1 and covariance Pk|k−1 is given by:

x̄k|k−1 = Fkx̂(k−1|k−1) (12)

Pk|k−1 = FkPk−1|k−1F
T
k + Qk (13)

where Qk is the process noise covariance (4 × 4 identity matrix
in our case) and Fk is the state transition function for constant
velocity:
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Fk =









1 0 1tk 0
0 1 0 1tk
0 0 1 0
0 0 0 1









(14)

1t in the transition function Fk of the asynchronous PDA
variation refers to the difference in the event time-stamp t of the
previous k − 1 tracker time step and the current k tracker time
step where:

1tk = tk − tk−1 (15)

The predicted measurement estimate z̄k|k−1 is given as:

z̄k|k−1 = Hkx̄k|k−1 (16)

The state prediction and update is calculated with the Kalman
gain Kk and covariance Sk at k. The predicted covariance Pk|k−1

and measurement covariance Rk (2 × 2 identity matrix in our
case) is given by:

Sk = HkPk|k−1H
T
k + Rk (17)

Kk = Pk|k−1H
T
k S

−1
k

(18)

and the innovation ǫk given as:

ǫ
θk
k

= z
θk
k
− z̄k|k−1 (19)

All θk possible data associations used in PDAmust be valid, where
mk is the total number of valid associations. In PDA filtering,
these valid data associations are measurement-track associations
that satisfy an elliptical gating threshold γ , where,

ǫθT
k S−1

k
ǫθ
k ≤ γ (20)

In PDA tracking, the PDA state update is represented by a
Gaussian mixture as the weighted sum of the mean of all valid
measurement association hypotheses:

x̄k|k =

mk
∑

θk=0

w
θk
k
x̂ki (21)

and the estimated PDA covariance given by,

Pk|k =

mk
∑

θk=0

w
θk
k

(

P
θk
k
+ (x̄k|k−1 − x̂k|k)(x̄k|k−1 − x̂k|k)

T
)

(22)

where w
θk
k
is the normalized hypothesis weight as the association

probability normalized for all valid association hypotheses:

w
θk
k

=
w̃

θk
k

∑mk
0 w̃i

k

(23)

here, the unnormalized weight w̃θ
k
is given by,

w̃θ
k =

{

1− pkD : θk = 0
pkDN(zk;z̄k|k−1 ,Sk)

λk
: θk ∈ {1, ...mk}

(24)

The estimated mean state and covariance for each hypothesis is
given by,

x̂
θk
k

=

{

x̄k|k−1 : θk = 0

x̄k|k−1 + Kk(z
θk
k
− z̄

θk
k|k−1) : θk ∈ {1, ...mk}

(25)

P
θk
k

=

{

Pk|k−1 : θk = 0
FkPk|kF

T
k
+ Qk : θk ∈ {1, ...mk}

(26)

In PDA filtering, λk is the clutter intensity as a Probability Mass
Function (PMF) on the number clutter measurements expected
within the measurement volume. λk is calculated by the size of
the measurement volume Vk (resolution of the EBC in this case)
and the expected clutter rate λ̄k:

λk =
λ̄k

Vk
(27)

Since we use a point model for our targets even while tracking
an unresolved target, the state prediction will often jump
perpendicularly toward the direction of motion toward the new
measurements which occur on the so-called “wandering edge”
of the target on its leading edge. This effect naturally leads to
predictions that are nearly perpendicular to the target direction
of motion. As a result, the predicted covariance and state in
this PDA algorithm for a valid θ0, “no detection” hypothesis is
given by the posterior covariance of the previous state, rather
than the prediction of the previous state. This modification is
shown above, where no detection hypothesis effectively assumes
the target has stopped moving. This modification is reasonable
for a no detection hypothesis in a sensor that measures contrast
change occurring predominantly from motion.

We assume a constant velocity state transition model, as a
“leap-frog” observed RSO (detailed more in Section 5) would
move with a constant velocity through the stationary field
unless it is recorded during a manoeuvre or other extenuating
circumstances. We define our process noise covariance and
measurement covariance as identity matrices, since we assume
these covariances are Gaussian distributed with no correlations
between the state variables and that the noise on the event-basis
is relatively low with a unity variance.

The proposed asynchronous PDA has a maximum of two data
association hypotheses. Since we track on an event-basis and
only track single targets, these two valid hypothesis (mk ≤ 2)
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are a miss-detection hypothesis θk0 and the true measurement

association hypothesis θk1 .
We experimentally selected a clutter rate λ̄k of 1 × 10−6 and

an initial pD0 of 0.75, which is tuned by the FIESTA network as
detailed later in Section 3.4. These parameters place a moderate
certainty in the probability of the EBC and feature consolidator
to produce strong tracking candidates that represent actual target
measurements, instead of clutter. These values become essentially
irrelevant too close unity, requiring a miss-detection to be very
close to the gating threshold before it can adversely affect the
state estimation. This effect is more pronounced as the feature
consolidator increases the pD during tracking. Consequently, we
have tuned the ellipsoidal gating and m/n track logic to prune
tracks with poor likelihood, regardless of the pD.

In PDA, miss-detection hypotheses are penalized, and in
FIESTA, tracks which are coasted for too long are deleted. By
assuming a single measurement per scan, tracks are coasted (and
penalized) more often with a miss-detection hypothesis. This
tracker behavior is suitable since it is desirable to penalize a track
that does not generate more events than clutter or background
noise measurements. Discussed later in Section 6, this tracking
approach may result in less optimal performance in a multi target
scenario.

3.4. Tracker-Detector Feedback
In FIESTA, we include two feedback mechanisms for “tracker-
detector” interaction. These interaction strategies allow the
tracker to make decisions based on both spatial measurements
from the event-stream and the spatio-temporal features of the
tracked target. These mechanisms facilitate track-learn-detect
style learning (Kalal et al., 2011). Here, the feature extractor
gradually learns which modeled features are more likely to
represent the spatio-temporal features of trackable targets.

The first tracker-detector interaction mechanism is a simple
detection probability pkD value association between SAN neurons.

This mechanism encodes SAN neurons with a pkD scaling factor
based on how likely a SAN neuron is to model features that
represent trackable targets. Since selection of a pkD is non-trivial
(Rezatofighi et al., 2015), we designed FIESTA to automatically
tune the pkD based on the tracker behavior and scene dynamics.

By scaling the pkD of a spiking SAN neuron, the hypothesis weight
can scale the track state and covariance estimate by likelihood of
whether the spatio-temporal features of the spiking SAN neuron
represent a salient target detection. If the spiking event of a SAN
neuron becomes associated with a track, and that track becomes
confirmed, that spiking SAN neuron is then associated with a
higher likelihood of producing confirmed tracks. Conversely, if
a SAN spiking event is associated with a deleted track, the pkD is

lowered. We achieve this by associating a pkD to each SAN neuron

and tuning this pkD by two factors pD+ and pD−, which raise or

lower the neuron pkD from an initial p0D. SAN neurons associated

with coasted tracks are set to a mid-range pkD value between

the maximum and minimum pkD (0.99 and 0.5 in our case).
These penalties must lie within this range to allow neurons to
recover from a deleted track and to prevent neurons consistently

producing tracks with high pkD near unity, even if the learned
features no longer represent trackable targets.

The second feedback mechanism for tracker-feature extractor
interaction in FIESTA involves the “track neuron”. This neuron
facilitates an additional condition to the gating step before data
association to discriminate between the spatio-temporal features
of the track neuron and the current measurement. The track
neuron is a FEAST neuron which gradually learns the features
of a tracked target with similar hyper-parameters to neurons in
the FAN. This neuron is updated with the weight of the SAN
pre-synaptic FAN neuron. If the track neuron spikes and the
neuron weight passes an activity filter, the current measurement
association is considered a valid detection and the track is
confirmed. This mechanism allows the track neuron to initiate
track confirmation both when the appearance of the latest time
context matches the learned appearance of the target, but also
when the features of the tracked target appear to have sufficient
contrast/activity. Additionally, this activity measure allows the
track neuron to still function effectively in STT cases where the
track neuron has no other tracks to differentiate.

Alongside the elliptical gating, this tracker-detector
interaction allows FIESTA to correctly discriminate between
measurements produced by noise/clutter or a true measurement
based on their spatio-temporal features. The inclusion of the
track neuron in FIESTA provides much needed spatio-temporal
feature discrimination between track and measurement that
PDA is only able to achieve based on the differences between
their respective Gaussian and uniform densities. This strategy
works to mitigate incorrect confirmation or association, where
a measurement likelihood is high, but the event-context of the
measurement has a different appearance to the track neuron’s
learned appearance of the tracked target. This track neuron is
also asynchronous and operates on the event-basis by updating
only when a track is successfully associated with a measurement.

4. THE OVERALL FIESTA ALGORITHM

The proposed FIESTA algorithm has two main components, first
feature extraction and then a tracker, as outlined in Figure 7.
The tracking component of FIESTA consists of a modified
asynchronous PDA tracker, which accepts events from FIESTAs
multi-layer feature consolidator. The PDA tracker receives
measurements as events ui from the consolidator, only in the
case it is considered salient, where the event’s local event-context
passes activity filtering and causes spiking in the FAN and SAN
networks of the consolidator. The tracker uses a track neuron
to gradually learn the appearance of the tracked target from
the spiking FAN neuron of the current tracker interval, so
associations can also be based on the spatio-temporal features of
the current event-context and the tracked target. The detection
probability pd of a given event is tuned based on whether
the currently spiking SAN neuron is associated to tracks that
are frequently confirmed or deleted. The online learning and
tracking components of FIESTA are reinitialized for each new
observation in order to be robust to changes in the dynamics of
the noise, scene, and targets between observations.
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FIGURE 7 | Outline of the overall FIESTA algorithm.

The FIESTA algorithm was written in C++, using the Eigen
and OpenCV library. The asynchronous PDA tracking code was
built onto a basic GNN tracking and Kalman filter framework
(Konstantinova et al., 2003). All results were obtained using a PC
with an Intel Core i7-7700HQ CPU @ 2.80 GHz × 8 with 16 GB
of RAM. The PDA algorithm weight calculations were conducted
in the log space.

FIESTA contains three main components, filtering, feature
extraction and tracking. The feature consolidation stage of the
system is comprised of two small FEAST networks in a feed-
forward configuration. The first network is the Fast Adapting
Network with a high learning rate to learn rapidly changing
salient features and constantly re-assign neurons with different
features. If a neuron in this network spikes, the neuron weight
is propagated to the SAN which consolidates the slow-changing
features from the FAN neuron weights. On spiking of a SAN
neuron and the SAN neuron weight passing an activity threshold,
the tracker is sent the event tuple of the current time step as the
measurement of this time step.

Additionally, the spiking FAN neuron weight is propagated
to the track neuron that belongs to the current associated
track. FIESTA’s strategy is to use the spiking of FEAST neurons
to indicate that a salient feature is developing in the event-
context at the location of the spiking event. This salient feature
may represent a trackable target and is, therefore, a reasonable
measurement input for the tracker. The tracker’s output is parsed
to a simple post-processor that filters events too close to the
edge of the FOV and interpolates the tracker state positions
in time using robust least-squares with bi-square weights. The
interpolated outputs can now be ingested by a mission system,
or in this case, our evaluation pipeline. The specific output

TABLE 1 | Brightness and speed combinations for simulated RSO tracking cases.

Case Altitude (km) Period (min) Speed (pixel/s)

Fast 200 98.5 1562.0

Medium 750 109.8 1342.0

Slow 2,000 127.2 1087.0

Case Faint Medium Bright

Magnitude

Brightness 12 9 6

of FIESTA in an operation mission system is observed state
estimates of an RSO reported for multiple overhead passes (given
range information is not measured), which can then be used in
an OD workflow.

5. RESULTS

In this article, we analyse a constrained STT case of so-called
“leap-frog” event-based SSA data collection to develop theory
toward real-time MTT. Leap-frog observing involves moving a
telescope sidereally and observing an RSO as it passes through
the FOV. This technique allows us to observe in a surveillance
capacity for un-cued RSO detection or detection of an RSO with
a known TLE. No other STT observing strategies are possible
without background star motion which inherently requires a
MTT approach.We examine this SSA data collectionmethod as a
means to evaluate FIESTA for STT. Similar to many conventional
tracking papers, we use simulated tracking data to separate
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the accuracy and performance of a sensor from the tracking
algorithm. We simulate targets observed using the sensor with
the implementation described in Joubert et al. (2021), whose
radiometric inputs are estimated based distortion-free point
spread functions matching real-world observations of RSO at
varying brightness with our telescopes. With this method, we
create simulated leap-frogs of single targets transiting through
the simulated FOV at random angles1 to separate the capabilities
of the EBC and telescope setup from the performance of the
proposed FIESTA algorithm.

Currently no real-world collected event-based SSA datasets
exist exclusively for STT or the current generation of EBCs. Early
datasets contain data collected with first generation EBC (Afshar
et al., 2019b), possess vastly different performance and noise
properties than the current third and fourth generation EBCs,
and are not applicable to this algorithm.

We analyse nine different leap-frog observing scenarios.
These scenarios include three different target brightnesses which
we test at three different speeds, resulting in a total of nine
scenarios, as detailed in Table 1. Each scenario contains 30
different simulations of a RSO entering the FOV at a random
angle and position. Target speeds consistent with RSOs in
Geostationary Earth Orbit (GEO) are not used to evaluate
FIESTA in the leap-frog scenario since the combination of
the leap-frog observing method and the low apparent speed
of the RSO would produce very little detectable contrast for
the EBC. The limiting magnitude of the current generation
three Dynamic Vision Sensor (DVS) EBC has been observed
to be approximately 13.5 using an 8-inch Riccardi-Honders
(RH) Officina Stellare Telescope in a light-polluted suburban
environment at the Western Sydney University, Werrington
North Campus, Australia. Different optics, seeing conditions,
and sky brightness are expected to result in a fainter limiting
magnitude. The faintest targets examined here have a magnitude
of 12 to ensure they would be within the limiting magnitude of
the sensor, and could be reliably observed.

A theoretical telescope and sensor configuration of a DVS346
on an 8-inch Officina Stellare was used to determine the pixel
scale and speed of the simulations. This setup has been previously
shown to successfully collect event-based SSA data (Cohen et al.,
2019). This configuration has a wide FOV with a chip FOV of
37× 28 arcminutes. Using the 346× 240 pixel array of the DVS,
the coverage of each pixel is 6.4 arcseconds in both dimensions.

We evaluate the accuracy of FIESTA by comparing the
ground truth of the simulated dataset to the post-processed
output of FIESTAs tracker. The tracker output constitutes the
time-stamped state of all confirmed targets in the FOV each
time an event reaches the tracker. This output is corrected
and interpolated in the post-processor. The post-processor also
removes track states within 20 pixels of the edge of the FOV.
We perform this step to remove tracks that might remain
in the FOV after the target has left, due to measurement
updates from wake events. These wake measurements are also
reported in the RADAR literature, where clutter measurements
in the wake of a moving target are received by a tracking

1Data available from https://github.com/neuromorphicsystems/IEBCS.

system due to spurious signal interactions with the target (Bar-
Shalom and Li, 1995). In low-light event-based sensing, these
effects can also be observed as a blurring effect (only in a
conceptual sense, but still as out-of-sequence measurements),
where pixels spike with a significant delay. These effects can
be apparent in leap-frog recording and can cause a slight delay
in track deletion as the target leaves the FOV but the track
remains while still receiving measurements from the delayed
wake events. Removing events close to the edge of the FOV
largely eliminates the effects of the wake events. Sequential
duplicated track state positions are also removed to mitigate
error caused by the presence of hot pixels or wake events which
cause affected track state to stall. Finally, track state positions
are interpolated using robust linear regression with bi-square
weights. This processed tracker output is then compared to
the ground truth at each time step using the Matlab Sensor
Fusion and Tracking Toolbox to calculate FIESTAs tracking
performance.

In Figures 8, 9, we compare the similarity of the FIESTA
features learned from the simulated DVS to features learned from
real-world collected event-based data. We show FIESTAs feature
consolidation and tracking behavior on a leap-frog observation
of RSO CZ-2C R/B using a third generation ATIS EBC in
Figures 10–12. Successful tracking in these figures highlight
the robust nature of FIESTA using different sensors without
any parameter changes. These figures demonstrate FIESTAs low
latency with a short 250 ms delay between the target’s first
appearance in the FOV and the confirmation of a track centered
on the new target. This latency is in part affected by the post-
processor which is removing tracks which occur too close to
the FOV as previously discussed. The post-processor is also
responsible for the track being deleted just before the RSO leaves
the FOV.

The differences between the raw event rate and the
tracker state estimation rate indicates FIESTA is successfully
disregarding a significant portion of the events as clutter. These
figures show FIESTA correctly handles the asynchronous nature
of EBC data where feature learning and tracking occur only
when sufficient salient events are produced. In Figure 11, this
asynchronous operation is also apparent with no learned features
before the RSO enters the FOV at time (A) and with no changes
in the network features after the RSO has left the FOV at time
(D). Blur events and hot pixels are particularly apparent in the
comparison of the plotted track position and the raw events.
These hot pixels are shown to not affect tracking.

We quantify the performance of FIESTA by calculating the
error between the state estimation output of the tracker and
to the simulated ground truth state of targets in Root Mean
Squared Error (RMSE). Additionally, we examine the latency
of FIESTA with the average time per event and the average
time required to acquire a target once it enters the FOV
and a confirmed track is initialized. Finally, we compute the
GOSPA metric for each simulated track scenario. GOSPA jointly
estimates the localization error of confirmed true targets and
an assignment performance based on the number of correctly
detected, missed and false targets (Rahmathullah et al., 2017).
Although GOSPA is less informative for STT cases than MTT,
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FIGURE 8 | The output of FIESTA using a simulated “slow” scenario (2,000 km altitude) and medium brightness (magnitude 9) with the target moving from top left to

bottom right corner (A). In these results, FIESTA is shown to correctly track the target. The track neuron (D) learns the spatio-temporal features of the target. The FAN

(B) and SAN (C) networks are behaving as expected, with the FAN learning fast changing features of the target in neuron N1, in addition to relatively noisy features

such as the neurons N4 and N6 learned from event contexts surrounding the target. Here, the SAN learns fewer, but more rich and less noisy slower developing

features from the FAN which best represent the salient target in the FOV in N0. Besides neurons N1, N4, N6 in the FAN and neuron N0 in the SAN, all other neurons

have not been updated and remain in a random state.

FIGURE 9 | The output of FIESTA using real world observations of an unidentified RSO, collected using a DVS (A). The tracking task is performed successfully and

the feature consolidation neurons are behaving similarly to the simulated scenario with noisier features learned in the FAN (B) and fewer but more rich Q13 features

learned in the SAN (C). There are marginal differences in the noise properties between these two observations which has caused a fainter track neuron (D) and more

noise neurons to be initialized in the FAN and SAN compared simulated scenario which is dominated instead by uninitialized neurons that have not learned any

features. The only uninitialized neuron with a random state in the SAN is N7.

we calculate the mean GOSPA for each scenario to produce a
metric which jointly describes the assignment and localization
error.

We observe a consistent sub-pixel average localization error
and variance across the evaluated simulations in Table 2 and
Figure 13. The best performance is obtained on the fastest
scenarios where the simulated target has a higher contrast and
produces more events. The lowest performance was found in the
slower and fainter scenarios where fewer events are produced by
the target due to lower contrast. The lowest error recorded was

on the fastest (200 km altitude) simulations. When comparing
the magnitude 9 and magnitude 6 brightness results across all
altitude cases, the error is shown to increase. This is due to targets
becoming less point-like (as our target model assumes) and
exhibiting more extended structure as the brightness increases,
which results in poorer performance as events cannot be assumed
to represent the target center of mass.

The velocity estimation error is found to be very low and
consistent with the low recorded localization error. A small
number of outliers are observed in the faintest and lowest
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FIGURE 10 | Leap-frog observation of RSO CZ-2C collected using a third generation ATIS EBC as it moves from the top of the FOV to the bottom. The observation is

shown as a rendering of the event steam with a 200µs integration time. At time (A), the target is moments from entering the FOV. At (B), the target has appeared,

FIESTA has learned the features of the target, has initialized and confirmed a track at the target location (orange triangle). At (C), the target is leaving the FOV and at

(D), the target has left the FOV and most blur/wake events have disappeared.

FIGURE 11 | Scatter plots of raw events and tracker estimated position (top row) and the raw event rate and tracker event rate vs. time of the CZ-2C RSO leap-frog

observation (bottom row) for each stage of the observation (A–D). We show at (B), that once the target has appeared, FIESTA initializes and confirms a track at the

target location. By (D), the target track has long ceased producing position outputs since the target left the FOV and it was deleted/filtered successfully despite the

presence of wake events.

contrast simulations, as shown in Figure 13, represented by
crosses. The error of these outliers is within 2.2 pixels. Analyses

of each case show the outliers are the result of fitting errors in the
post-processor or the FIESTA failing to detect sufficient events
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FIGURE 12 | FIESTA features in the FAN (left panel of each sub-figure) and SAN (right panel of each sub-figure) learned during a leap-frog observation of RSO CZ-2C

and shown at stages (A–D) of the observation. When the RSO enters the FOV (A), the FAN rapidly learns fast changing, simple, and low resolution features of the

target, while the SAN gradually learns richer, more stable, and longer term features of the RSO. The FAN and SAN features gradually refine into richer features and

converge by (C). When the RSO has left the FOV In (D), the features are largely unchanged and inactive. These features will not be updated again until a new stimulus

is present.

TABLE 2 | Localization and track assignment metrics recorded across each testing scenario.

Case

altitude and brightness

Average position

RMSE (pixel)

STD position

RMSE (pixel)

Average velocity

RMSE (pixels

per Second)

STD velocity

RMSE (pixels

per Second)

Average

GOSPA

STD

GOSPA

200 km

Mag 12 0.200 0.224 1.608E-06 4.599E-06 0.178 0.043

Mag 9 0.158 0.125 7.687E-07 1.467E-06 0.145 0.062

Mag 6 0.204 0.158 5.436E-07 9.342E-07 0.186 0.076

750 km

Mag 12 0.330 0.292 5.393E-07 1.105E-06 0.307 0.042

Mag 9 0.188 0.103 6.967E-07 1.204E-06 0.172 0.060

Mag 6 0.235 0.282 1.476E-06 4.012E-06 0.194 0.078

2,000 km

Mag 12 0.320 0.189 5.927E-07 1.162E-06 0.305 0.062

Mag 9 0.202 0.103 7.026E-07 1.565E-06 0.186 0.074

Mag 6 0.262 0.157 9.557E-07 2.450E-06 0.244 0.078

for a more accurate and continuous state estimation, which often
results in momentary track switches.

In Table 3, the velocity and localization errors are expressed
in arcseconds. Our angular projection is given by the pixel
scale of the DVS364 in the optical setup described in Section
5, which is 6.4 arcseconds per pixel. Our recorded localization
error is observed to be consistently within 4 arcseconds. Shown
in Table 4, the highest horizontal error is 170.416 m at 2,000 km
altitude with a localization error of 1.758 arcseconds and a
horizontal error of 8.510 m in the best case with an altitude of

200 km at 0.878 arcseconds of localization error. The recorded
error is within a suitable range to perform accurate OD on the
simulated targets. Given a higher resolution EBC and optical
setup with a smaller FOV, the individual pixel coverage can be
reduced to provide higher accuracy RSO state estimates.

Average GOSPA scores (as a cost between 0 and 1, where 0
indicates no error) indicate that the localization error is the most
dominant error component of FIESTA, thereby demonstrating
robust assignment behavior. False tracks were not observed in
any simulation. Track switching, however, is relatively common
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FIGURE 13 | Comparison of the RMSE localization error (pixel) recorded in each of the nine simulated RSO altitude and magnitude brightness scenarios. In each

scenario, 30 different recordings were evaluated.

TABLE 3 | Localization and track metrics recorded across each testing scenario expressed in arcseconds based on the pixel coverage of the DVS364 in the optical setup

described in Section 5 at 6.4 arcseconds of coverage per pixel.

Case

altitude and brightness

Average position

RMSE (arcsec)

STD position

RMSE (arcsec)

Average velocity

RMSE (arcsec

per Second)

STD velocity

RMSE (arcsec

per Second)

200 Km

Mag 12 0.878 1.031 2.792E-05 7.676E-05

Mag 9 1.039 1.031 1.987E-05 7.378E-05

Mag 6 1.474 1.654 3.948E-05 1.282E-04

750 Km

Mag 12 1.052 0.920 5.899E-06 1.352E-05

Mag 9 1.280 1.308 1.584E-05 3.349E-05

Mag 6 1.614 1.650 2.812E-05 6.322E-05

2,000 Km

Mag 12 1.523 2.757 1.852E-05 5.915E-03

Mag 9 1.557 2.080 2.562E-05 5.722E-05

Mag 6 1.758 2.504 3.479E-05 9.369E-05

and occurs on average once per recording across all recording
cases. The standard deviation of all recorded performance
metrics is low, indicating the system is robust and stable across
all dataset recordings.

As detailed in Table 5, the processing time for each simulation
across all tested scenarios was faster than real-time, with events
being processed under 40 µs. These speeds are shown to be
independent on the event bandwidth. This is likely the result of
FIESTAs feature consolidator dynamically tuning the amount of
processing it performs by assessing the information content of
events that might represent trackable data, rather than processing
all events indiscriminately. Time performance per event is
evaluated as the average time taken to process all events in the
event-stream, regardless of whether the event reached the tracker

or was filtered. High bandwidth simulations in order of 25,000 -
41,000 events per Second were still processed in real-time, which
clearly demonstrates FIESTAs efficiency and low latency.

In Tables 6, 7 and Figure 14, we examine FIESTAs
components and show that each stage contributes to the overall
performance. By evaluating the FAN and SAN separately then
together as a feature consolidator, we show quantitatively that
the consolidation mechanism improves the final performance
greater than the combined performance of the individual
networks. In Table 6, the localization error using an isolated
SAN is lower than the feature consolidator for the lowest
contrast simulation in the fast and faint scenario (200 Km
altitude magnitude 12). This behavior suggests that while the
feature consolidator broadly improves accuracy and processing
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TABLE 4 | Localization and track metrics recorded across each testing scenario expressed in horizontal error (m) based on the pixel coverage of the DVS364 and the

selected optical setup at 6.4 arcseconds of coverage per pixel and the RSO altitude at each test scenario.

Case

altitude and brightness

Average

horizontal

position

error (m)

STD horizontal

position

error (m)

Average horizontal

velocity error (m

per Second)

STD horizontal

velocity error (m

per Second)

200 Km

Mag 12 8.510 9.994 2.707E-04 7.443E-04

Mag 9 10.072 9.997 1.927E-04 7.154E-04

Mag 6 14.295 16.041 3.828E-04 1.243E-03

750 Km

Mag 12 38.265 33.470 2.145E-04 4.914E-04

Mag 9 46.538 47.543 5.760E-04 1.218E-03

Mag 6 58.685 59.993 1.022E-03 2.299E-03

2,000 Km

Mag 12 147.678 267.293 3.373E-03 9.084E-03

Mag 9 150.986 201.673 2.485E-03 5.549E-03

Mag 6 170.416 242.838 3.373E-03 9.084E-03

TABLE 5 | Computational performance metrics recorded across each testing scenario.

Case

altitude and

brightness

Average

bandwidth

(events

per Second)

STD

Bandwidth

(events)

Average time

per

event (us)

STD time

per

event (us)

Average

real-time

(%)

STD

real-time

(%)

200 Km

Mag 12 38137.859 10.200 3.253 730.597 314.587 31.695

Mag 9 18442.608 10.867 2.488 522.433 136.346 19.108

Mag 6 14537.104 11.500 1.996 380.998 94.154 23.819

750 Km

Mag 12 19243.195 10.333 2.023 642.590 144.932 29.298

Mag 9 20073.603 10.133 2.193 548.930 139.189 21.760

Mag 6 19970.590 11.033 2.236 404.956 113.422 15.892

2,000 Km

Mag 12 20050.127 9.300 1.932 712.197 160.545 25.667

Mag 9 16992.072 10.333 2.040 519.937 114.501 21.081

Mag 6 19551.495 10.300 2.120 434.300 121.547 28.676

TABLE 6 | Performance evaluation at each stage of FIESTA without post-processing.

FIESTA component

(cumulative)

Mean position

RMSE (pixel)

Mean real-time

processing (%)

Mean velocity error

(pixel)
Mean GOSPA

Tracker 2.8759 221.7626 12.6018E-06 0.8156

Preprocessor 2.8739 240.9913 12.6589E-06 0.8156

FAN 2.8779 297.2654 74.9138E-06 0.8176

SAN (no FAN) 2.7735 250.9218 22.6100E-06 0.8131

FAN and SAN 2.5491 379.7335 61.8122E-06 0.8176

Track Neuron 2.4366 588.4136 38.4575E-06 0.8180

Pd Feedback 2.4899 602.7380 40.5514E-06 0.8184

time across the 8 other scenarios, it may be filtering out too
many events in the lowest contrast scenario which would
otherwise be detected using longer time-scale learning in an
isolated SAN. The feature consolidator and track neuron stages
are shown to significantly improve the real-time processing
performance despite the additional processing overhead
introduced by each component. The pkD feedback mechanism
is shown to marginally reduce the performance of FIESTA

while only marginally improving the real-time computational
performance.

The performance contribution of the offline post-processor is
significant as expected since targets in this linear and constant
velocity leap-frog tracking task can be easily fit after tracking. In
Table 8, the localization and velocity estimation error for the full
FIESTA output with and without post-processing is compared to
post-processed raw data and a post-processed random sample of
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TABLE 7 | Mean RMSE localization error in pixels at each stage of FIESTA across all simulated testing scenarios.

Component Position

RMSE (Pixel) Tracker
Pre-

processor
FAN

SAN

(no FAN)

SAN and

FAN

Track

neuron

Pd

Feedback

Case

200 Km

Mag 12 3.321 3.322 3.572 3.218 3.328 3.252 3.317

Mag 9 2.850 2.847 2.837 2.763 2.474 2.173 2.227

Mag 6 2.493 2.491 2.502 2.470 2.314 2.256 2.332

750 Km

Mag 12 3.401 3.402 3.509 3.257 3.156 3.140 3.213

Mag 9 2.804 2.804 2.729 2.667 2.384 2.150 2.180

Mag 6 2.536 2.536 2.741 2.446 2.315 2.165 2.207

2,000 Km

Mag 12 3.163 3.163 2.841 3.065 2.524 2.438 2.431

Mag 9 2.823 2.806 2.704 2.708 2.299 2.180 2.297

Mag 6 2.493 2.493 2.466 2.368 2.148 2.175 2.204

the raw data. The number of state estimates from the full FIESTA
output in each simulated observation was used to determine
the sample count in the randomly sampled raw data tests.
These results show as expected that the post-processed output
of FIESTA has improved performance. Additionally, the post-
processor alone is capable of producing reasonable accuracy
in this simple STT scenario which is comparable to the raw
output of FIESTA. However, the raw FIESTA output produces
a lower velocity estimation error than the post-processed raw
data and randomly sampled raw data. We clearly show the
performance of the post-processed randomly sampled raw data
is substantially poorer than the post-processed FIESTA output,
which demonstrates FIESTA is correctly filtering events to
produce accurate target state estimations.

The GOSPA metric recorded for each component do not
vary significantly, indicating that the lowered localization error
observed at each stage is not achieved at the cost of poorer overall
track quality. Velocity estimation error gradually increases with
all FIESTA components active, however the recorded error
remains low and in the range of 1 × 10−5 pixels per Second
(without post-processing). These error changes are due to
FIESTA progressively filtering more events from the target with
each new component of FIESTA, which reduces the number
of data points over which the velocity can be estimated. In
Figure 14, similar gradual increases in the mean standard
deviation of the localization RMSE can be observed with the
introduction of each component. The cause of this change is
FIESTA gradually improving the localization error for a majority
of simulated observations, while a small number of outlier
observations (shown as outliers in Figure 13) are not similarly
improving.

6. DISCUSSION AND FUTURE WORK

In this article, we demonstrate FIESTA as an accurate STT
algorithm capable of sub-pixel position and velocity error with
low variance. Evaluated using simulated event-based SSA data,
these results indicate that FIESTA can successfully perform STT
SSA tasks, and is a fundamental step toward MTT for SSA. With

leap-frog observing, FIESTA can be used to track known or un-
cued targets, and accurately estimate the target velocity using
only a single transit of the RSO through the FOV.

By evaluating FIESTA on simulated data, we separate the
combined performance of the proposed telescopic observing
system and the EBC from the performance of FIESTA. In an
optical setup with a smaller FOV, or with a higher resolution
EBC, the angular sky localization error could be reduced.
For example, with the latest high resolution 1280 × 720
Prophesee camera (Finateu et al., 2020), the individual pixel
size is significantly smaller, which is expected to result in
correspondingly smaller sky-position localization error.

We demonstrate the localization accuracy and processing
time improvements provided by each component of FIESTA
and show the successful combination of the FAN and SAN as
a feature consolidator. However, the pkD feedback mechanism
was observed to be sub-optimal and will need improvement
in future work. An individual SAN was shown to have
a lower localization error than the feature consolidator on
the lowest contrast scenario (200 Km at magnitude 12) but
with significantly reduced real-time processing performance.
Future iterations of FIESTA with a greater focus on tracking
exceedingly faint targets at the cost of processing time will
likely require a feature consolidator with lower learning
rates.

The high-speed performance and low latency of FIESTA are
highlighted by the low Target Time to Acquire (TTA) observed
consistently across each simulated scenario, demonstrating
FIESTA can react quickly to new targets entering the FOV.
The low recorded TTA also suggests that a FIESTA-enabled
SSA system could be used for closed-loop target tracking with
the inclusion of an MTT algorithm to handle background
astrophysical targets. Given FIESTA operates accurately and in
real-time, we are confident that it can handle similar data rates
from the most recent high resolution and high bandwidth HD
Prophesee-Sony Sensor EBCs.

We assume a point object model for tracked targets to
simplify computation. Successive iterations of FIESTA will be
used investigate an extended object model to account for the
spatial characteristics of targets. Extended Target Tracking (ETT)
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FIGURE 14 | Comparison of the mean RMSE localization error (pixel), mean standard deviation of the localization error (pixel) and mean real-time processing

performance across all simulated scenarios at each stage of FIESTA.

will allow FIESTA to track seemingly more extended targets with
distributed structure, such as bright stars or faint targets that
produce excessive wake events. ETT is expected to also reduce
localization error with better estimates of the target centroid,
since single events are not guaranteed to represent the target
center of mass.

We demonstrate FIESTAs robust performance in multiple
simulated SSA observations with the same system parameters,
despite the varying dynamics found in each simulated scenario.
Shown in our Supplementary Material, FIESTA requires few
parameters. The authors found that of these intuitive parameters,
the clutter rate and activity thresholds are the only parameters
that need to tuned for different datasets if they have significantly
different scene dynamics or noise properties. Tuning FIESTA is
a simple process of modifying the activity thresholds to vary the
number of events received by the tracker based approximately on
the amount of noise in the scene. Similarly, the clutter intensity

can be tuned to provide the tracker with the approximate
expected number of noise measurements per unit volume.

Low state estimation error observed when evaluating the
proposed asynchronous PDA in FIESTA demonstrates our
successful exploration of the balance between statistically optimal
and mathematically robust conventional tracking algorithms
that often come with high computational cost. With accurate
performance and real-time processing, FIESTA is shown to
successfully balance computational speed with a robust closed-
form tracking solution. The rigor and reliability of the
asynchronous PDA is shown by our low localization error
and correspondingly low variance. Although we ease the
mathematical rigor of PDA for faster computation at the cost of
optimality and information loss, we still observe low error. The
proposed algorithm also strikes a balance between accuracy and
latency with event-basis processing, while avoiding measurement
techniques such as generating event frames with predetermined
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TABLE 8 | Comparison of the localization and velocity estimation error in the raw

data and the FIESTA output when post-processed, with the lowest error (most

ideal) shown in bold.

Data source Average position

RMSE (pixels)

Average velocity

RMSE (pixels

per Second)

Post-processed raw data 2.176 4.667E-04

Post-processed randomly

sampled raw data

2.383 3.143E-04

Final FIESTA output 2.437 4.055E-05

Post-processed final FIESTA

output

0.211 3.918E-06

integration times. Additionally, we use our novel feature
consolidation network as a solution to the low information
content of an individual event by dynamically accumulating
sufficient events for tracking on the event-basis. We show with
confidence that we have produced an event-based processing
system that makes full use of the performance and characteristics
of the EBCs temporal resolution, speed, asynchronous processing
and dynamic range.

While this article explores STT, we plan to explore an active
RSO tracking task, where a MTT algorithm such as JPDA or
GM-PHD is used to track an RSO and the apparent motion of
background stars during closed-loop telescope slewing. In aMTT
scenario, the event-based assumptions and constraints proposed
in this article would lead to a similarly simplified one-to-many
measurement-track assignment problem as opposed to many-
to-many problem. In this scenario, only one measurement per
scan can be associated with one of many tracks, which greatly
reduces the computational cost of the assignment operation. The
draw-back with this approach is that tracks are coasted more
often. Coasting would occur each time a track is not associated
with measurement, meaning some tracks may be coasted for
N − 1 scans (or more in extreme cases where a target produces
very few events) and be penalized more often by (1 − pkD),
before being associated to a measurement. For the STT case, this
problem is not as pronounced since it is desirable to track only
the most salient target, which would ideally produce an event
every tracker update interval. Maintaining this mathematical
rigor and optimality becomes significantly more important when
faced with MTT event-based SSA, and with higher data rates and
increased clutter.

For generalized scenarios, we expect that the current STT
version of FIESTA with a point target model would perform well
for similar tasks with small fast moving single targets. With this
point target model, performance will diminish with large extent
targets. Additionally, the feature consolidator is configured with
relatively small 11× 11 neurons/contexts which limits the size of
the learned features. These dimensions can be increased for larger
targets at the cost of increased processing time.

MTT capabilities would be required to track targets in the
presence of increased clutter targets and complex background
conditions. FIESTAs rapid learning capabilities, millisecond
latency and implementation of the well-established PDA tracker

suggests that FIESTA is capable of tracking targets with varying
motion dynamics and appearance. However, the long-term
behavior of FIESTA has not yet been studied.

Target speeds consistent with RSOs in GEO are not used to
evaluate FIESTA in the leap-frog scenario since the combination
of the leap-frog observing method and the low apparent speed
of the RSO would produce very little detectable contrast for the
EBC. The limiting magnitude of the current generation three
DVS EBC has been observed to be approximately 13.5.

As discussed in Section 5, the low mutual motion between the
observer and a GEO target will cause a leap-frog manoeuvre to
produce very little contrast in the sensor. A traditional tracking
slew will produce higher contrast on a smaller region of the
image plane, but it would also induce motion in the background
star field, which requires an MTT algorithm. This inherently
limits the current STT version of FIESTA to single target leap-
frog scenarios and potentially only bright GEO. We expect the
main tracking limitations are the capabilities of the EBC (limited
to targets brighter than magnitude 13.5) and the brightness of
the target itself, which is a function of size, geometry, material
composition and sun illumination.

7. CONCLUSION

In this article, we propose and evaluate FIESTA as an accurate,
and real-time tracking by detection algorithm for the novel
event-based SSA paradigm. FIESTA makes full use of the EBCs
capabilities by operating online and unsupervised to achieve
statistically robust and closed-form tracking. The evaluated
accuracy and high-speed performance indicate that FIESTA
is well-suited to SSA tasks such as RSO detection, tracking,
localization and orbit determination. FIESTA is demonstrated
to be robust and operate with few tunable parameters. Our
novel unsupervised feature consolidation networks and track
neurons are highly plastic, and quickly adapt to new targets
within the scene with few priors on target appearance and state
dynamics. We successfully analyse the event-based paradigm
shift to develop theory for the appropriate processing of event-
based SSA tracking and in-frame velocity estimation. Our results
show we successfully explore the trade-off between the higher
spatial resolution and light intensity collection at the pixel
that conventional vision sensors possess and the high temporal
resolution of the EBC. This work is a fundamental step toward a
MTT solution to the challenges of event-based SSA. The theory
developed here precisely lays the foundation for robust closed-
loop event-based tracking using rigorous closed-form solutions
that are evaluated using standardized tracking metrics.
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