20 research outputs found

    Lifetime risk and genetic predisposition to post-traumatic OA of the knee in the UK Biobank

    Get PDF
    Objective Acute knee injury is associated with post-traumatic OA (PTOA). Very little is known about the genome-wide associations of PTOA when compared with idiopathic OA (iOA). Our objective was to describe the development of knee OA after knee injury and its genetic associations in UK Biobank (UKB). Design Clinically significant structural knee injuries in those <=50 years were identified from electronic health record and self-reported data in 502,409 UKB participants. Time-to-first knee OA code was compared in injured cases and age-/sex-matched non-injured controls using Cox Proportional Hazards models. A time-to-OA genome-wide association study (GWAS) sought evidence for PTOA risk variants 6 months-20 years following injury. Evidence for associations of two iOA polygenic risk scores (PRS) was sought. Results Of 4233 knee injury cases, 1896 (44.8%) were female (mean age at injury 34.1 years [SD10.4]). Over a median of 30.2 (IQR19.5-45.4) years, 1096 (25.9%) of injured cases developed knee OA. The overall hazards ratio (HR) for knee OA after injury was 1.81[1.70,1.93],P=8.9x10-74. Female sex and increasing age at injury were associated with knee OA following injury (HR1.15[1.02,1.30];1.07[1,07,1.07] respectively). OA risk was highest in the first 5 years after injury (HR3.26[2.67,3.98]), persisting for 40 years. In 3074 knee injury cases included in the time-to-OA GWAS, no variants reached genome-wide significance. iOA PRS was not associated with time-to-OA (HR 0.43[0.02,8.41]). Conclusions Increasing age at injury and female sex appear to be associated with future development of PTOA in UKB, the risk of which was greatest in the 5 years after injury. Further international efforts towards a better-powered meta-analysis will definitively elucidate genetic similarities and differences of PTOA and iOA

    Defining predictors of responsiveness to advanced therapies in Crohn’s disease and ulcerative colitis: protocol for the IBD-RESPONSE and nested CD-metaRESPONSE prospective, multicentre, observational cohort study in precision medicine

    Get PDF
    Introduction: Characterised by chronic inflammation of the gastrointestinal tract, inflammatory bowel disease (IBD) symptoms including diarrhoea, abdominal pain and fatigue can significantly impact patient’s quality of life. Therapeutic developments in the last 20 years have revolutionised treatment. However, clinical trials and real-world data show primary non-response rates up to 40%. A significant challenge is an inability to predict which treatment will benefit individual patients. Current understanding of IBD pathogenesis implicates complex interactions between host genetics and the gut microbiome. Most cohorts studying the gut microbiota to date have been underpowered, examined single treatments and produced heterogeneous results. Lack of cross-treatment comparisons and well-powered independent replication cohorts hampers the ability to infer real-world utility of predictive signatures. IBD-RESPONSE will use multi-omic data to create a predictive tool for treatment response. Future patient benefit may include development of biomarker-based treatment stratification or manipulation of intestinal microbial targets. IBD-RESPONSE and downstream studies have the potential to improve quality of life, reduce patient risk and reduce expenditure on ineffective treatments. Methods and analysis: This prospective, multicentre, observational study will identify and validate a predictive model for response to advanced IBD therapies, incorporating gut microbiome, metabolome, single-cell transcriptome, human genome, dietary and clinical data. 1325 participants commencing advanced therapies will be recruited from ~40 UK sites. Data will be collected at baseline, week 14 and week 54. The primary outcome is week 14 clinical response. Secondary outcomes include clinical remission, loss of response in week 14 responders, corticosteroid-free response/remission, time to treatment escalation and change in patient-reported outcome measures. Ethics and dissemination: Ethical approval was obtained from the Wales Research Ethics Committee 5 (ref: 21/WA/0228). Recruitment is ongoing. Following study completion, results will be submitted for publication in peer-reviewed journals and presented at scientific meetings. Publications will be summarised at www.ibd-response.co.uk. Trial registration number: ISRCTN96296121

    Loss of IL-10 signaling in macrophages limits bacterial killing driven by prostaglandin E2

    Get PDF
    Loss of IL-10 signaling in macrophages (Mφs) leads to inflammatory bowel disease (IBD). Induced pluripotent stem cells (iPSCs) were generated from an infantile-onset IBD patient lacking a functional IL10RB gene. Mφs differentiated from IL10RB−/− iPSCs lacked IL-10RB mRNA expression, were unable to phosphorylate STAT3, and failed to reduce LPS induced inflammatory cytokines in the presence of exogenous IL-10. IL-10RB−/− Mφs exhibited a striking defect in their ability to kill Salmonella enterica serovar Typhimurium, which was rescuable after experimentally introducing functional copies of the IL10RB gene. Genes involved in synthesis and receptor pathways for eicosanoid prostaglandin E2 (PGE2) were more highly induced in IL-10RB−/− Mφs, and these Mφs produced higher amounts of PGE2 after LPS stimulation compared with controls. Furthermore, pharmacological inhibition of PGE2 synthesis and PGE2 receptor blockade enhanced bacterial killing in Mφs. These results identify a regulatory interaction between IL-10 and PGE2, dysregulation of which may drive aberrant Mφ activation and impaired host defense contributing to IBD pathogenesis

    Mitochondrial damage-associated molecular patterns (DAMPs) in inflammatory bowel disease

    Get PDF
    Background The inflammatory bowel diseases (IBD) ulcerative colitis (UC) and Crohn’s disease (CD) are chronic relapsing inflammatory disorders which have a rising incidence and cause significant morbidity. There are currently several treatment options with many more in the drug pipeline, but there are a lack of accurate biomarkers for decisions on treatment choice, assessment of disease activity and prognostication. There is a growing interest and desire for personalised or ‘precision’ medicine in IBD where novel biomarkers may help individualise IBD care in terms of diagnosis, choice of therapy, monitoring of response and detection of relapse. One class of functionally active biomarkers which have yet to be thoroughly investigated in IBD is damage-associated molecular patterns (DAMPs) including mitochondrial DNA (mtDNA). It has been recently shown that gut mitochondrial dysfunction can result in loss of epithelial barrier function and the development of colitis. Mitochondrial DAMPs have recently been described as elevated in several inflammatory diseases. Hypothesis The primary hypothesis of this thesis is that circulating levels of mtDNA is elevated in IBD. Secondary hypotheses are: (a) levels of other mitochondrial DAMPs are elevated in IBD, (b) circulating mtDNA can be used as a novel biomarker in IBD and (c) mtDNA is released locally at sites of inflammation in IBD. Methods Plasma and serum were collected prospectively from recruited IBD patients and non-IBD controls. Faeces and colonic tissue were collected from a subset of these patients. mtDNA in serum, plasma and faeces was measured using qPCR (amplifying COXIII/ND2 genes). Mass spectrometry was used to detect mitochondrial formylated peptides in the plasma of a subset of patients. IBD tissue was assessed for (a) mitochondrial damage using transmission electron microscopy (TEM) and (b) TLR9 expression, the target for mtDNA. Results 97 patients with IBD (67 UC and 30 CD), and 40 non-IBD controls were recruited. Plasma mtDNA levels were increased in UC and CD (both p<0.0001) compared to non-IBD controls; with significant correlations with blood (CRP, albumin, white cell count), clinical and endoscopic markers of severity; and disease activity. In active UC, we detected significantly higher circulating mitochondrial formylated peptides and faecal mtDNA levels (vs. non-IBD controls [p<0.01 and <0.0001 respectively]) with demonstrable TEM evidence of intestinal mucosal mitochondrial damage. In active IBD, TLR9+ lamina propria inflammatory cells were significantly higher in UC/CD compared to controls (both p<0.05). Conclusions Taken together, the findings suggest mtDNA is released during active inflammation in inflammatory bowel disease and is a potential novel mechanistic biomarker

    History of narcolepsy at Stanford University

    Get PDF

    Defactinib inhibits PYK2 phosphorylation of IRF5 and reduces intestinal inflammation

    No full text
    Interferon regulating factor 5 (IRF5) is a multifunctional regulator of immune responses, and has a key pathogenic function in gut inflammation, but how IRF5 is modulated is still unclear. Having performed a kinase inhibitor library screening in macrophages, here we identify protein-tyrosine kinase 2-beta (PTK2B/PYK2) as a putative IRF5 kinase. PYK2-deficient macrophages display impaired endogenous IRF5 activation, leading to reduction of inflammatory gene expression. Meanwhile, a PYK2 inhibitor, defactinib, has a similar effect on IRF5 activation in vitro, and induces a transcriptomic signature in macrophages similar to that caused by IRF5 deficiency. Finally, defactinib reduces pro-inflammatory cytokines in human colon biopsies from patients with ulcerative colitis, as well as in a mouse colitis model. Our results thus implicate a function of PYK2 in regulating the inflammatory response in the gut via the IRF5 innate sensing pathway, thereby opening opportunities for related therapeutic interventions for inflammatory bowel diseases and other inflammatory conditions

    Loss of IL-10 signaling in macrophages limits bacterial killing driven by prostaglandin E2

    No full text
    Loss of IL-10 signaling in macrophages (Mφs) leads to inflammatory bowel disease (IBD). Induced pluripotent stem cells (iPSCs) were generated from an infantile-onset IBD patient lacking a functional IL10RB gene. Mφs differentiated from IL-10RB-/- iPSCs lacked IL-10RB mRNA expression, were unable to phosphorylate STAT3, and failed to reduce LPS induced inflammatory cytokines in the presence of exogenous IL-10. IL-10RB-/- Mφs exhibited a striking defect in their ability to kill Salmonella enterica serovar Typhimurium, which was rescuable after experimentally introducing functional copies of the IL10RB gene. Genes involved in synthesis and receptor pathways for eicosanoid prostaglandin E2 (PGE2) were more highly induced in IL-10RB-/- Mφs, and these Mφs produced higher amounts of PGE2 after LPS stimulation compared with controls. Furthermore, pharmacological inhibition of PGE2 synthesis and PGE2 receptor blockade enhanced bacterial killing in Mφs. These results identify a regulatory interaction between IL-10 and PGE2, dysregulation of which may drive aberrant Mφ activation and impaired host defense contributing to IBD pathogenesis

    Considerations for peripheral blood transport and storage during large-scale multicentre metabolome research

    Get PDF
    We read with interest the multiomic studies by Kong et al and Chen et al examining gut microbiome-metabolome interactions and potential diagnostic and classification biomarkers in colorectal cancer.1 2 Large-scale, multicentre, multisample, longitudinal studies are imperative to understand complex relationships between the metabolome and digestive diseases.</p
    corecore