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ABSTRACT 

 

Background 

The inflammatory bowel diseases (IBD) ulcerative colitis (UC) and Crohn’s 

disease (CD) are chronic relapsing inflammatory disorders which have a rising 

incidence and cause significant morbidity. There are currently several 

treatment options with many more in the drug pipeline, but there are a lack of 

accurate biomarkers for decisions on treatment choice, assessment of disease 

activity and prognostication. There is a growing interest and desire for 

personalised or ‘precision’ medicine in IBD where novel biomarkers may help 

individualise IBD care in terms of diagnosis, choice of therapy, monitoring of 

response and detection of relapse. One class of functionally active biomarkers 

which have yet to be thoroughly investigated in IBD is damage-associated 

molecular patterns (DAMPs) including mitochondrial DNA (mtDNA). It has 

been recently shown that gut mitochondrial dysfunction can result in loss of 

epithelial barrier function and the development of colitis. Mitochondrial DAMPs 

have recently been described as elevated in several inflammatory diseases.  

 

Hypothesis  

The primary hypothesis of this thesis is that circulating levels of mtDNA is 

elevated in IBD. Secondary hypotheses are: (a) levels of other mitochondrial 

DAMPs are elevated in IBD, (b) circulating mtDNA can be used as a novel 

biomarker in IBD and (c) mtDNA is released locally at sites of inflammation in 

IBD.  
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Methods 

Plasma and serum were collected prospectively from recruited IBD patients 

and non-IBD controls. Faeces and colonic tissue were collected from a subset 

of these patients. mtDNA in serum, plasma and faeces was measured using 

qPCR (amplifying COXIII/ND2 genes). Mass spectrometry was used to detect 

mitochondrial formylated peptides in the plasma of a subset of patients. IBD 

tissue was assessed for (a) mitochondrial damage using transmission electron 

microscopy (TEM) and (b) TLR9 expression, the target for mtDNA. 

 

Results 

97 patients with IBD (67 UC and 30 CD), and 40 non-IBD controls were 

recruited. Plasma mtDNA levels were increased in UC and CD (both p<0.0001) 

compared to non-IBD controls; with significant correlations with blood (CRP, 

albumin, white cell count), clinical and endoscopic markers of severity; and 

disease activity. In active UC, we detected significantly higher circulating 

mitochondrial formylated peptides and faecal mtDNA levels (vs. non-IBD 

controls [p<0.01 and <0.0001 respectively]) with demonstrable TEM evidence 

of intestinal mucosal mitochondrial damage. In active IBD, TLR9+ lamina 

propria inflammatory cells were significantly higher in UC/CD compared to 

controls (both p<0.05). 

 

Conclusions 

Taken together, the findings suggest mtDNA is released during active 

inflammation in inflammatory bowel disease and is a potential novel 

mechanistic biomarker. 
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LAY SUMMARY 

 

The mitochondria (‘batteries’ for the living cells) provide energy and regulate 

many key biological processes that maintain cellular health and function. The 

mitochondria within the lining of the large bowel are particularly exposed to a 

number of detrimental factors, which can damage the mitochondria. In health, 

damaged mitochondria (‘faulty batteries’) are effectively re-cycled or packaged 

away for safe disposal.  

 

In the inflammatory bowel diseases (IBD) Crohn’s disease and ulcerative 

colitis, it has been shown that these protective processes do not work properly 

or are overwhelmed. The unhealthy colon therefore leaks damaged 

mitochondria and their products (including their genetic ‘code’: DNA) into the 

internal environment of the cells and importantly into the blood circulation. Of 

interest, the mitochondria, which reside in all cells, are evolutionarily derived 

from helpful bacteria maintaining a mutually beneficial relationship with the 

host cells. The mitochondria share many similar properties with bacteria – 

including their ability to activate the inflammatory and immune system. It has 

already been shown that in many human inflammatory diseases, levels of 

mitochondrial DNA and other products have been found to be elevated in the 

blood circulation. 

 

In this thesis, a well-characterised patient population was recruited and 

compared to healthy people. Mitochondrial product levels were found to be 
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significantly higher in patients with IBD compared to healthy people, and higher 

levels were found within the IBD cohort for those with active inflammation. This 

information may be useful as a ‘biomarker’ to assess for disease activity, 

predict how patients will do, or how they may respond to therapy.  

 

High levels of mitochondrial products were also found in the faeces, and cells 

expressing the receptor that is activated by these products were also found to 

be higher in the lining of the gut. These findings suggest that the inflamed gut 

may be the primary source of these mitochondrial products.  

 

Importantly, this data adds to the growing evidence suggesting blockade of the 

inflammatory effects arising from damaged mitochondria within the lining of the 

gut may benefit some patients with IBD. This requires further investigation.  

 

In summary, this work has identified a highly novel, specific and measurable 

factor in inflammatory bowel disease. This sets the platform for further 

research into this area to investigate how mitochondrial DNA may be used as 

a biomarker, and its precise contribution to inflammatory bowel disease. 
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1.1 Inflammatory Bowel Disease 
 

1.1.1 Background to Crohn’s disease & ulcerative 

colitis 
 

The inflammatory bowel diseases (IBD), ulcerative colitis (UC) and Crohn’s 

disease (CD) are chronic, relapsing and remitting diseases of the 

gastrointestinal tract. The incidence and prevalence of IBD is increasing, and 

will affect an estimated 20 million people worldwide by 2025 (Molodecky et al., 

2012; Kaplan, 2015). Both conditions are incurable, often diagnosed at a 

young age and are associated with significant socio-economic costs and 

morbidity (Baumgart and Sandborn, 2012; Ordás et al., 2012). IBD can 

severely affect social functioning and cause significant disruption to 

employment, education, relationships and family life. 

 

There are clear differences between UC and CD (Table 1.1). However, failure 

to resolve mucosal inflammation (which commonly re-activates upon 

withdrawal of anti-inflammatory treatments such as glucocorticoids) is a 

notable shared clinical feature.  UC invariably affects the rectum and extends 

proximally to a variable distance, with characteristically confluent inflammation 

limited to the mucosal layer of the colon. In contrast, CD can affect any part of 

the gastrointestinal tract and inflammation is characteristically non-continuous 

and transmural.  
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Due to its transmural nature, CD often requires surgery due to fistulas 

(abnormal connection between two epithelial surfaces) or strictures (narrowing 

of the intestine that may cause obstruction). Perianal disease (inflammation 

around the anus) is a particularly disabling manifestation of CD and occurs in 

up to a third of patients (Schwartz, Loftus and Tremaine, 2002). 

 

 Crohn’s Disease Ulcerative Colitis 

Anatomical 
Distribution 

May affect anywhere from 
mouth to anus; commonly 
affects terminal ileum and 
colon 

Limited to the large intestine; 
extends from rectum proximally 
to a variable distance 

Type of gut 
inflammation 

Non-continuous, patchy 
inflammation with skip lesions 

Continuous, superficial  

Histology Deep, transmural, focal 
inflammatory infiltrate. 
Markedly focal cryptitis, non-
necrotizing granulomas, 
epithelioid granulomas.  

Superficial (affecting the 
mucosa and submucosa) 
inflammatory infiltrate with loss 
of crypt architecture, basal 
plasmacytosis, goblet cell 
depletion 

Main clinical 
features 

Diarrhoea, abdominal pain, 
fatigue, weight loss 

Rectal bleeding, tenesmus, 
diarrhoea, abdominal pain 

Incidence 
(North 
American data) 

20.2 per 100,000 person-
years 

19.2 per 100,000 person-years 

Peak incidence Between 20-40 years Between 20-40 years 

Environmental 
associations 

Smoking, western diet, stress, 
appendectomy 

Milder disease with smoking, 
lower risk with appendectomy 

Genetics Themes involving defective 
intracellular bacterial killing 
and innate immunity  
and de-regulated 
adaptive immune responses. 

Themes involving epithelial 
integrity, innate immune 
function, immune regulatory 
function, and cellular 
homeostasis in response to 
endoplasmic reticulum stress. 

Table 1.1: Features of Crohn’s disease and ulcerative colitis 
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1.1.2 Pathogenesis of IBD 
 

The last decade has seen remarkable progress in understanding the 

pathogenesis of IBD. Although the aetiology is complex, the most widely 

accepted hypothesis purports IBD as an immune mediated condition in 

genetically susceptible individuals, where disease onset is triggered by 

environmental factors that perturb the mucosal barrier, alter the healthy 

balance of the gut microbiota, and abnormally stimulate gut immune responses 

(Boyapati, Satsangi and Ho, 2015; Colombel and Mahadevan, 2017). IBD is 

thought to arise from a complex and incompletely understood interplay 

between these factors (Figure 1.1).  Advances in these fields have catalysed 

a decade of spectacular progress in our understanding of IBD.  

 

The importance of genetic predisposition is clear: first degree relatives of a 

patient with CD or UC have a 10-fold increased risk of developing the same 

condition, whilst there is also a significant but less pronounced increased risk 

of developing the other of the two diseases (Orholm et al., 1991). Meta-

analysis now involving 50,000 IBD individuals implicates more than 200 

susceptibility loci (Jostins et al., 2012; J. Z. Liu et al., 2015) . This information 

provided new hitherto unknown insights into disease mechanisms and 

biological pathways. An aberrant immune response is a key feature of IBD; 

genetic studies have most strongly and consistently implicated themes 

involving epithelial integrity, innate immune function, endoplasmic reticulum 

(ER) stress, defective intracellular bacterial killing and de-regulated adaptive 
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immune responses (Boyapati, Satsangi and Ho, 2015; G-T. Ho, Boyapati and 

Satsangi, 2015).  

 

Figure 1.1: Complex interplay of various factors in IBD pathogenesis. IBD 

pathogenesis involves a complex interplay over time between genetic, 

epigenetic, immunological, and microbiological mechanisms affected by 

exposure to triggering factors. Individual patients with IBD have a unique 

pathogenic signature comprised of different contributions from each of these 

factors. Stratification of patients based on these signatures may lead to more 

focused, personalized, and successful therapies. Therapeutic translation is 

grounded on a greater understanding of these genetic and molecular 

pathways. Furthermore, correcting and avoiding triggering factors related to 

the exposome are areas of considerable interest. ‘Smart’ clinical trials with 

simultaneous mechanistic studies may allow improved understanding even in 

the case of therapeutic failures (Boyapati, Satsangi and Ho, 2015). 
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Beyond genetics, epigenetics is emerging as a further tier of information that 

could complement genome wide association studies (GWAS) (Ventham et al., 

2013). Several epigenome wide studies have been published in IBD and other 

diseases (Nimmo et al., 2012; Adams et al., 2014; Dick et al., 2014; Yuan et 

al., 2014; McDermott et al., 2016). These studies identify epigenetic 

mechanisms as a potential interface between genetics and disease. The 

microbiome or ‘other genome’ – the collective genome of the gut microbiota –  

represents a further giant dimension in big data in IBD and other complex 

multifactorial conditions such as diabetes and obesity (Jostins et al., 2012; Qin 

et al., 2012; Le Chatelier et al., 2013; Zeevi et al., 2015) enabled by advances 

in culture independent sequencing technologies.  

 

Although some environmental factors have been established (e.gs smoking, 

stress and appendectomy), it is likely that many more environmental ‘triggers’ 

are relevant but unidentified (e.g. diet). These are particularly difficult research 

areas and most available evidence relies on case-control studies which suffer 

from important limitations such as recall bias. There are current efforts 

recruiting into large prospective cohorts investigating how the environment 

may contribute to the onset of IBD (e.g. http://www.gemproject.ca) and trigger 

flares in patients who have IBD (e.g. http://www.predicct.co.uk). 
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1.1.3 Clinical overview of IBD 
 

1.1.3.1 Diagnosis 

The diagnosis of IBD can be difficult, as there is currently no accurate, quick 

and non-invasive diagnostic test. Furthermore, several other conditions are 

symptomatically similar including gastrointestinal infection and irritable bowel 

syndrome (IBS) (Table 1.2). Some patients are symptomatic for many years 

before a diagnosis is made (Pimentel et al., 2000). Diagnosis usually 

encompasses clinical, laboratory, radiological, endoscopic and histological 

findings to establish the disease type, extent and severity. 

 

Differential diagnosis Features 

Bacterial dysentery Shigellosis; salmonellosis; Campylobacter infection 

Amoebic dysentery Watery bloody diarrhoea, recent travel to endemic 
area 

Cytomegalovirus Immunocompromised patients (e.g. HIV) 

Clostridium difficile Co-exists with UC in ∼5–10% of refractory cases 

Ischaemic colitis ‘Watershed’ areas (e.g. deep ulceration at distal 
transverse colon and splenic flexure): present with 
bloody diarrhoea 

Irritable bowel 
syndrome 

Abdominal pain / cramping, bloating and alternating 
constipation / diarrhoea in the absence of 
inflammation on investigation 

Table 1.2: Differential diagnosis of IBD 
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1.1.3.2 Clinical features 

IBD is a relapsing and remitting condition that follows an unpredictable pattern. 

Although broadly classified into CD and UC, the disease is highly individual in 

terms of symptomatology, prognosis and response to treatment. Clinical 

features may include diarrhoea, colicky abdominal pain, rectal bleeding, 

urgency and systemic manifestations such as anorexia, malaise, weight loss 

and fever. Patients may also have extra-intestinal manifestations (EIM) of IBD 

such as axial or peripheral arthropathy, erythema nodosum, pyoderma 

gangrenosum, episcleritis, uveitis, primary sclerosing cholangitis and Sweet’s 

syndrome (Vavricka et al., 2015). Although specific therapies are sometimes 

required, treatment of the underlying intestinal inflammation often leads to 

resolution of EIMs. 

 

1.1.3.3 Treatment 

Disease flares require rapid diagnosis and institution of active management to 

minimise the impact of relapse on the patients’ wellbeing and to avoid 

hospitalisation. Complete mucosal healing, the strongest predictive factor for 

long lasting remission, is difficult to achieve. A summary of the medical 

therapies used in IBD and indications for surgery are provided in Table 1.3. 
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 Crohn’s Disease Ulcerative colitis 

Medical therapy   

Induction of      
remission 

Corticosteroids  5-aminosalicylates (topical 
and/or oral) 

 Anti-TNF therapy Corticosteroids (topical and/or 
oral) 

 Anti-integrin therapy 
(vedolizumab) 

Ciclosporin (acute severe UC) 

 Anti-IL-12/23 therapy 
(ustekinumab) 

Anti-TNF therapy 

  Anti-integrin therapy 
(vedolizumab) 

  Anti-IL-12/23 therapy 
(ustekinumab) 

Maintenance of 
remission 

Azathioprine/6-
mercaptopurine 

5-aminosalicylates 

 Methotrexate Azathioprine/6-mercaptopurine 

 Anti-TNF therapy Methotrexate (evidence less 
strong) 

 Anti-integrin therapy 
(vedolizumab) 

Anti-TNF therapy 

 Anti-IL-12/23 therapy 
(ustekinumab) 

Anti-integrin therapy 
(vedolizumab) 

  Anti-IL-12/23 therapy 
(ustekinumab) 

Surgical 
indications 

Failed medical therapy 
(commonest) 

Failed medical therapy 
(commonest)  

 Perforation Massive haemorrhage 

 Corticosteroid dependency Toxic dilatation 

  Perforation 

  Corticosteroid dependency 

  Malignancy/dysplasia 

Table 1.3: Summary of medical therapy and surgical indications for IBD 
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1.1.3.4 Clinical assessment of disease severity 

There are many IBD clinical disease activity assessment tools used in 

research and clinical practice. For UC, the main clinical indices are the Simple 

Clinical Colitis Activity Index (SCCAI), the Partial Mayo Index and the Truelove 

and Witts’ Severity Index (for acute severe UC). For CD, the main clinical 

indices are the Crohn’s Disease Activity Index (CDAI), Harvey-Bradshaw Index 

(HBI) and the Perianal Crohn’s Disease Activity Index (PDAI).  

 

A summary of the main strengths and weaknesses of the respective scoring 

systems for UC (Table 1.4) and CD (Table 1.5) is provided.  

 

Ulcerative colitis    

Index name Strengths Weaknesses Reference 

SCCAI - Can be completed by 

patient 

- Reliable, valid, 

responsive and 

feasible 

 (Walmsley et al., 

1998) 

Partial Mayo 

Index 

- Widely used 

- Discriminates 

remission from active 

disease 

- Relies on 

subjective 

Physician Global 

Assessment 

(Schroeder, 

Tremaine and 

Ilstrup, 1987; 

Sandborn et al., 

2003) 

Truelove & 

Witts’  

severity Index 

- Objective criteria for 

ASUC 

- Provides prognostic 

information 

- Only for ASUC (Truelove, 1955) 

Table 1.4: Disease activity assessment indices used in clinical practice for UC 

(adapted from Walsh et al. 2016) 
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Crohn’s Disease    

Index name Strengths Weaknesses Reference 

CDAI - Widely used  - Complex calculation including 

a 7-day diary 

- High variability 

- Low contribution to total 

score for perianal disease 

(Best et 

al., 1976) 

HBI - Simpler, less 

cumbersome 

- Correlates well 

with CDAI 

- Low contribution to total 

score for perianal disease 

(Harvey 

and 

Bradshaw, 

1980) 

PDAI - Easy to use - Only for perianal disease 

- Fistula severity not included 

(Irvine, 

1995) 

Table 1.5: Disease activity assessment indices used in clinical practice for CD 

(adapted from Walsh et al. 2016) 

 

The scoring for indices used in this thesis are provided in Appendix A (HBI for 

CD; SCCAI for UC, and modified Truelove & Witts’ criteria for acute severe 

UC). 
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1.1.3.5 Severe disease 

In CD, most patients will encounter a disabling disease course and 

approximately half will require surgery within 10 years of diagnosis (Beaugerie 

et al., 2006; Peyrin-Biroulet et al., 2010). In UC, 15% will develop acute severe 

UC (ASUC) where there is significant colonic epithelial damage and treatment 

is with intravenous steroids (Gwo-Tzer Ho, Boyapati and Satsangi, 2015). 

ASUC is defined by the modified Truelove & Witts’ criteria (Appendix A). For 

patients with ASUC who do not respond to intravenous steroids, rescue 

therapy with either infliximab or ciclosporin is standard of care but the failure 

rate of medical therapy is high (~30% requiring surgical removal of the colon) 

(Turner et al., 2007) (Figure 1.2).  

 

 

Figure 1.2: (L to R) Endoscopic appearance of mild, moderate and severe UC. 

Far right image is colonic resection specimen of severe UC. 
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1.1.4 IBD biomarkers in current practice 
 

There are a handful of biomarkers that have established roles in current clinical 

practice: C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), 

albumin, faecal calprotectin, anti-TNF antibodies and thiopurine 

methyltransferase (TPMT) activity measurements. In addition, general blood 

parameters such as white cell count (WCC) and platelet count may provide 

information about general inflammation.  

 

CRP 

Blood based disease activity assessment in IBD has been dominated by CRP 

which is induced by IL-6, TNFα and IL-1β. CRP is a hepatocyte derived acute 

phase reactant protein and detected in the blood. CRP has a short half-life, 

and serum levels of CRP correlate with disease activity in CD (Vermeire, Van 

Assche and Rutgeerts, 2004). However, CRP is not specific to gut 

inflammation, and a subgroup of IBD patients will not mount a CRP response 

despite having significant inflammation (Boirivant et al., 1988).  

 

Erythrocyte sedimentation rate 

ESR measures the vertical distance that erythrocytes fall in one hour. A 

number of factors influence ESR including erythrocyte characteristics (size, 

shape, number) and patient factors (age, gender, pregnancy, presence of 

blood dyscrasias). Elevated levels are included as one of the criteria in the 

Truelove & Witts’ criteria for ASUC. In clinical practice, CRP is used more 

frequently as it is a better indicator early in the acute phase response. 
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Albumin 

Albumin is a negative acute phase reactant protein and low albumin levels is 

associated with inflammation. However, hypoalbuminaemia is also associated 

with non-inflammatory disease states such as malnutrition and malabsorption.  

 

Faecal calprotectin 

Faecal calprotectin is a screening tool for gut inflammation (van Rheenen, van 

de Vijver and Fidler, 2010) and to measure disease activity in IBD (Lin et al., 

2014). More recently, the potential to use faecal calprotectin in innovative ways 

has been explored including as a predictive tool e.g. to identify disease 

recurrence in post-operative CD (Wright et al., 2014) and as a secondary end-

point in IBD clinical trials.  

 

Anti-TNF antibodies 

Detection of anti-TNF antibodies allows for expedient switching to an 

alternative drug (Nanda, Cheifetz and Moss, 2013) and avoids conventional 

dose escalation which is often futile, expensive and potentially hazardous 

(Steenholdt et al., 2014). A randomised controlled trial (RCT) in the setting of 

secondary loss of response to infliximab compared conventional dose 

intensification with an algorithm based approach based on serum infliximab 

levels and antibodies (Steenholdt et al., 2014). Here, management dictated by 

drug levels and antibodies was found to be cost effective with no reduction in 

clinical efficacy. The current case of anti-TNF however, is instructive and 

highlights the difficulties ahead in developing a biomarker based decision-
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making model. Although therapeutic drug monitoring and antibody testing has 

been an important recent advance, there is currently no clinically useful 

predictor of anti-TNF response prior to initiation.  

 

Thiopurine methyltransferase (TPMT) 

TPMT measurement can screen for those who are likely to experience life 

threatening leukopenia from thiopurines (Lennard, 2002) and those who would 

benefit from a reduced initial dose. Although the routine use of TPMT 

measurement has been questioned based on cost-effectiveness, this test has 

been incorporated into standard clinical practice.  

 

Although of some clinical benefit, these current examples demonstrate the lack 

of accurate biomarkers in clinical practice for help in precise diagnosis, 

prognostication, monitoring of disease activity and monitoring of response to 

therapies for individuals with IBD.  
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1.1.5 Towards personalised biomarkers in IBD 
 

Given the highly individual nature of IBD, clinicians long for a future where a 

newly diagnosed patient can have his/her genetic, microbiome and immune 

profile measured at the outset; then matched to the most appropriate biologic 

or immunosuppressive treatment based on the likelihood of response/adverse 

effects. IBD individuals will be given information of what ‘exposome’ to modify 

and report on their disease activity using the set of optimal biomarkers. At all 

levels, one can expect a continuous feedback of new data from respective 

patients, which will further improve the dataset for biomarker discovery in this 

context. This future may seem farfetched, and many challenges remain, but 

multiple lines of evidence show progress towards ‘precision medicine’ in IBD 

(Boyapati, Kalla, et al., 2016). Key to progress in this area is the ability of 

researchers to identify novel biomarkers to help personalise therapy. 

 

DAMPs represent underexplored but potentially important pathogenic stimuli 

that may contribute to maintaining the state of abnormal mucosal inflammation 

in IBD (Boyapati, Rossi, et al., 2016). Although relatively underexplored in IBD, 

it is salutary to note that the most useful clinical biomarker used in IBD currently 

(faecal calprotectin) is a DAMP that was developed from hypothesis-based 

investigation.  
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1.2 Damage-associated molecular patterns 
 

1.2.1 Recognising danger and promoting 

inflammation 
 

The inflammatory response is essential to host defence, promoting microbial 

containment and clearance. This sentinel function of the innate immune 

system rapidly and precisely distinguishes between ‘self’ and ‘non-self’ by 

recognizing microbial invariant molecular patterns (pattern associated 

molecular patterns, PAMPs) through a system of germline encoded pattern 

recognition receptors (PRRs) (Akira, Uematsu and Takeuchi, 2006). PRR 

activation leads to intracellular signalling cascades, transcriptional 

upregulation of inflammatory genes, production of proinflammatory cytokines, 

chemokines and type I interferons (IFN), and recruitment of inflammatory cells 

such as neutrophils.  

 

Similar strong immune responses are seen in the absence of invasive 

pathogens (‘sterile inflammation’) such as in autoimmunity, trauma and 

ischemia. This phenomenon is explained by Matzinger’s ‘danger hypothesis’ 

in which immune responses are geared towards recognizing danger whether 

these signals arise endogenously or exogenously  (Matzinger, 1994) (Figure 

1.3). Endogenous damage-associated molecular patterns (DAMPs) are 

‘danger signals’ or ‘alarmins’ released during host cellular stress or injury. 

Along with exogenous PAMPs of microbial origins, DAMPs can initiate and 
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perpetuate an inflammatory response typically via germline encoded pattern 

recognition receptors (PRR). 

 

1.2.2 PAMPs, DAMPs and PRRs 
 

In this context, PRRs are activated by both non-self (PAMPs) as well as 

endogenous molecules released at times of danger to the host (DAMPs) 

(Matzinger, 2002). The major classes of PRRs are cell surface or endosomal 

toll-like receptors (TLRs), cytoplasmic nucleotide binding and oligomerisation 

domain (NOD) like receptors (NLRs) and inflammasomes, C-type leptin 

receptors, RIG-1 like receptors and absence in melanoma 2 (AIM2)-like 

receptors (Takeuchi and Akira, 2010)(Blander and Sander, 2012). In addition, 

the more DAMP-specific receptor for advanced glycation end-products 

(RAGE) is also a categorized as a PRR (Xie et al., 2008).  
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Figure 1.3: Danger recognition by the innate immune system. PRRs such as 

TLR, NLR, and RAGE sense danger associated with infection via recognition 

of evolutionarily conserved PAMPs on pathogens or sterile injury via 

recognition of DAMPs. Activation of cell surface or intracellular PRRs leads to 

intracellular signalling and inflammatory responses. (Boyapati, Rossi, et al., 

2016)  
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1.2.3 DAMP cellular mechanisms 
 

DAMPs comprise of structurally diverse non-pathogen derived molecules that 

share a number of characteristics: (1) they bind to and activate PRRs; (2) are 

passively leaked after plasma membrane rupture following various forms of 

cell death including necrosis, necroptosis and secondary necrosis; (3) may be 

actively secreted by stressed cells via non-classical pathways independent of 

the ER/Golgi apparatus; and (4) may change from a physiological to a 

proinflammatory function when released into the extracellular milieu (Rock et 

al., 2008) (Figure 1.4).  
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Figure 1.4: DAMP cellular mechanisms. Cellular stress may also lead to 

damaged cellular components such as reactive oxygen species (ROS) 

generating mitochondria. Increased ROS production and oxidative stress may 

have multiple effects including increased translocation and active release of 

DAMPs and further cellular stress, leading to a vicious cycle. Defects in 

homeostatic pathways such as autophagy leads to escape of DAMPs such as 

mtDNA. Intranuclear DAMPs require translocation into the cytosol before 

active release. Active release (‘‘secretion’’) occurs through nonclassical 

pathways and cellular membrane rupture after necrosis or necroptosis results 

in passive release of DAMPs. ER stress contributes to the functional activity of 

DAMPs e.g. through increased translocation and contributing to its role as an 

adjuvant; DAMPs can directly lead to increased ER stress. (Boyapati, Rossi, 

et al., 2016) 
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Extracellular DAMPs may activate cell surface PRRs or intracellular PRRs 

after phagocytosis, endocytosis or other mechanisms of internalisation 

(Schaefer, 2014). DAMPs may originate from any compartment of stressed 

cells and include intracellular proteins, extracellular matrix (ECM) derived 

proteins and purinergic molecules. The list of recognized DAMPs is growing 

rapidly—a list of putative DAMPs and their receptors is provided in Table 1.6. 
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DAMP Receptor 

HMGB1 TLR2, TLR4, TLR9, RAGE  

S100 proteins TLR4, RAGE, surface heparin sulfate 

proteoglycan and carboxylated N-glycans 

IL-1α IL-1R 

IL-33 ST2 (IL1RL1) 

Heat Shock Proteins (HSPs) TLR2, TLR4, CD91, CD40, CD14 

ATP P2Y, P2X, NLRP3 

Lactoferrin TLR4  

Mitochondrial DAMPs mtDNA: TLR9 

TFAM: RAGE and TLR9 

N-formyl peptides: formyl peptide receptor 1 

(FPR1) and FPR2 

NLRP3 inflammasome 

Histones TLR2, TLR4, NLRP3, TLR9 

Galectins TLR2 

Uric Acid TLR2, TLR4, NLRP3, CD14 

Thioredoxin Unknown 

Cathelicidins FPR2 

Adenosine A1, A2A, A2B, A3 

Defensins CCR6 and TLR4, TLR1, TLR2 

Calreticulin CD91 

RNA TLR3 

Genomic DNA TLR9, AIM2, NLRP3  

Small nuclear RNA TLR7, TLR8 

SAP130 CLEC4E 

Extra cellular matrix (ECM) components 

Hyaluronan TLR2 and TLR4 

Biglycan TLR2, TLR4, P2X4, P2X7, NLRP3 

Versican TLR2, TLR6, CD14 

Heparan sulfate TLR4 

Fibronectin (extra domain A) TLR2, TLR4 

Fibrinogen TLR4 

Tenascin C TLR4 

Other ECM components e.g. 

laminin, elastin and collagen 

derived peptides 

Integrins 

Table 1.6: Putative list of DAMPs & receptors (Boyapati, Rossi, et al., 2016) 
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Under physiological conditions, DAMPs reside intracellularly or are 

sequestered in the ECM and are thus hidden from recognition by innate 

immune cells bearing PRRs. In response to perceived danger such as tissue 

damage, DAMPs are liberated extracellularly serving to signal danger to the 

host, promoting inflammation and repair processes that are initially beneficial 

and protective (Schaefer, 2014). However, in the setting of significant and 

persistent DAMP release, ongoing PRR activation with resultant cytokine and 

chemokine production may result in deleterious ‘collateral damage’ and 

therefore have a central role in pathogenesis. The clearest example is in acute 

gout, where uric acid crystals directly trigger the NLRP3 inflammasome leading 

to overwhelming inflammation (Martinon et al., 2006).  

 

The role of DAMPs has been explored in disease models using direct 

administration of purified or recombinant DAMPs and/or depletion via 

antagonists or antibodies (Kono and Rock, 2008). DAMP genetic knockout 

(KO) studies have limitations as they are unable to discriminate between the 

physiological intracellular and proinflammatory extracellular functions of 

DAMPs. In the first study to demonstrate how DAMP administration can cause 

inflammation in vivo, Johnson et al. observed a systemic inflammatory 

response syndrome (SIRS)-like response after administration of the DAMP 

soluble heparin sulfate (Johnson, Brunn and Platt, 2004). Systemic 

administration of a recombinant form of the DAMP high-mobility group box 1 

protein (HMGB1) in mice is lethal (Wang et al., 1999), with gut epithelial barrier 

dysfunction a notable feature (Sappington et al., 2002).  
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In sepsis, initial PAMP mediated activation of PRRs may be followed by cellular 

damage, DAMP release and subsequent DAMP-PRR inflammatory signalling. 

In a study illustrating this concept, lethal anthrax challenge in baboons was 

associated with only transiently elevated bacterial DNA whilst mitochondrial 

DAMP levels remained elevated until death (Lindberg et al., 2013). The 

authors used activated protein C treatment as an approach to suppress innate 

immunity which led to animal survival and no such persistent DAMP elevation. 

This suggests that endogenous DAMPs may have critical pathogenic roles 

even in conditions traditionally felt to be PAMP mediated (such as IBD). 
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1.3 Mitochondria & mitochondrial DAMPs 
 

1.3.1 Introduction to mitochondria 
 

Mitochondria are intracellular double-membrane bound organelles (‘cellular 

powerhouses’) with many essential physiological roles in energy production, 

programmed cell death, calcium homeostasis and the synthesis of lipids, 

amino acids and haem. In addition, they are involved in antibacterial, antiviral, 

and stress responses to hypoxia and tissue injury (West, Shadel and Ghosh, 

2011; Nunnari and Suomalainen, 2012). Each nucleated cell has a varying 

number of mitochondria depending on the metabolic requirements of the cell 

(up to thousands per cell). 

 

Mitochondria are evolutionarily derived from energy producing alpha-bacteria, 

engulfed by archezoan cells approximately 2 billion years ago leading to a 

symbiotic relationship that forms the basis of the eukaryotic cells (Dyall, Brown 

and Johnson, 2004). The mitochondria share several features with their 

bacterial ancestors, including the double-membrane structure, an 

independently replicating circular genome rich in hypomethylated CpG motifs 

and the synthesis of N-formylated proteins (Galluzzi et al., 2012).  

 

  



1. Introduction         28 
 

1.3.2 Mitochondrial DAMPs  
 

As the innate immune system recognizes conserved bacterial molecules, 

mitochondrial constituents are similarly immunogenic acting as DAMPs when 

released into the cytosol and extracellular environment, triggering innate 

immune responses and promoting inflammation (Boyapati, Rossi, et al., 2016). 

 

Cellular stress and necrosis leads to extracellular release of intramitochondrial 

components such as mitochondrial DNA (mtDNA), N-formyl peptides, 

transcription factor A mitochondrial (TFAM), ATP and mitochondrial lipids as 

DAMPs. In addition to roles in activating PRRs (Table 1.7), mitochondrial 

DAMPs have additional roles such as with chemotaxis – for example, 

mitochondrial formylated peptides can recruit and activate neutrophils 

(Dorward et al., 2015).  

 

Mitochondrial DAMPs Receptor(s) 

mtDNA TLR9, NLRP3 inflammasome 

TFAM RAGE and TLR9 

N-formyl peptides FPR1 and FPR2 

Table 1.7: Mitochondrial DAMPs and their receptors 
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1.3.3 Mitochondrial DNA 
 

The mitochondrial DAMP which has thus far attracted the most attention is 

mtDNA. MtDNA is present in multiple copies within each nucleated cell (each 

mitochondrion is estimated to contain between 2-10 mtDNA copies (Wiesner 

et al., 1992)). It is a relatively small, circular, double stranded DNA molecule 

consisting of 16,569 base pairs (Figure 1.5) enriched with inflammatogenic 

unmethylated CpG motifs resembling bacterial DNA.  

 

mtDNA comprises of 13 protein coding genes encoding for proteins of the 

electron transport train within the inner mitochondrial membrane (Figure 1.5) 

as well as 22 transfer ribonucleic acids (RNAs) coding genes and 2 ribosomal 

RNAs (12S and 16S rRNAs) which are vital for the processes of translation 

and peptide synthesis (Taanman, 1999).  

 

Genetic defects in mtDNA may be inherited through maternal transmission and 

may lead to a wide range of rare debilitating multi-organ system diseases and 

syndromes (Taylor and Turnbull, 2005).  
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Figure 1.5: Structure of mtDNA. The mitochondrial genome contains 13 

protein-coding genes, two rRNA genes (12S and 16S) and 22 tRNA genes 

(denoted by black circles) alongside a D-loop from where the initiation of 

replication and transcription occurs. Adapted from Taanman et al. 1999 with 

permission from Dr David Dorward. 
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1.3.4 Detecting and measuring circulating mtDNA 
 

I performed a review of the literature around sampling, processing and 

quantification protocols for mtDNA to inform the study design. Quantification 

of mtDNA from a sample varies considerably depending on various factors, 

discussed in full in Section 2.4.1. In brief, variation occurs based on the type 

of blood fraction used (serum vs. plasma), time to sample processing, 

consistency in sample processing, centrifugation protocol (whether a second-

high speed spin is used) and qPCR (quantitative polymerase chain reaction) 

protocol.  

 

Therefore, to ensure a robust and accurate assessment of the differences in 

the levels of circulating mtDNA between IBD and non-IBD cohorts, the 

following was implemented as part of this thesis:  

• A prospective design 

• Strict sampling methodology including minimal delays in processing 

samples. 

• Second, high speed centrifugation step employed to remove mtDNA-

plasma. 

• Both plasma and serum obtained 

• qPCR protocols based on sentinel reports (Chiu et al., 2001; Zhang et 

al., 2010) and then developed and optimised at QMRI, Edinburgh 

(Dorward et al., 2017). 
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1.3.5 Circulating mtDNA in inflammatory diseases 
 

Freely circulating mtDNA can be detected, with over 60 studies quantifying 

mtDNA by qPCR in plasma and serum in human diseases (listed in Table 1.8), 

with many studies suggesting circulating mtDNA may be a potential biomarker.  

 

Uncontrolled mtDNA release is evident during conditions associated with acute 

tissue injury such as systemic inflammatory response syndrome (SIRS), 

fulminant liver failure, trauma, acute myocardial infarction, and sepsis; and in 

chronic inflammatory states such as systemic lupus erythematosus (SLE) 

(Boyapati et al., 2017) . This implicates major cellular stress and uncontrolled 

cell death as key factors in the release of mtDNA (Figure 1.6). In cancer, where 

its role as ‘liquid biopsies’ is a topic of considerable interest, the pattern is less 

clear with relatively lower circulating levels found in some cancers (Lee et al., 

2004).  
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Figure 1.6: The contribution of mtDNA to disease pathogenesis. Medical 

conditions are in italics. Where and how mitochondria are released are 

indicated in red. Box in dotted line frames mtDNA sensor target (Boyapati et 

al., 2017).  

 

 

Given the significant tissue injury burden typically observed in active IBD, we 

hypothesised that such pathogenic release is present and that mtDNA can act 

as a pro-inflammatory DAMP potentiating and perpetuating the abnormal 

inflammatory response.  
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Table 1.8: Circulating mitochondrial DNA in human disease 

Disease 
Category 

Disease Blood 
Fraction 

Finding Reference(s) 

Trauma     

 Trauma Plasma High mtDNA levels in trauma compared to healthy controls, and 
correlated with injury severity  

(Lam et al., 2004) 

 Trauma Plasma High mtDNA levels in trauma (Zhang et al., 2010; 
Zhang, Itagaki and 
Hauser, 2010) 

 Trauma with MODS Plasma Higher levels of mtDNA had higher relative risk for mortality 
Higher levels of mtDNA in those with SIRS / MODS compared to 
those without 

(Simmons et al., 2013) 

 Trauma and severe 
sepsis 

Plasma mtDNA higher in patients with trauma compared to healthy controls 
on day 1 
mtDNA correlates with injury severity scores in trauma patients 
mtDNA higher on day 1 in non-survivors compared to survivors  

(Hsu et al., 2013) 

 Post-Traumatic SIRS Plasma mtDNA is an independent predictor for post-traumatic SIRS (Gu et al., 2013) 

 Trauma Plasma mtDNA higher in trauma patients with correlation with injury severity (Nicole Y.L. Lam, 
Timothy H. Rainer, 
Rossa W.K. Chiu and 
Lo, 2004) 

 Trauma (femur 
fracture) 

Plasma mtDNA higher in trauma patients than healthy controls (Hauser et al., 2010) 

 Trauma Plasma mtDNA higher in trauma patients compared to healthy controls at 
two-time points (pre-hospital and day 1) 

(Timmermans et al., 
2016) 
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 Trauma Plasma mtDNA higher in trauma patients than healthy controls 
mtDNA higher in non-survivors compared to survivors 

(Prikhodko et al., 2015) 

 Hip fracture Plasma mtDNA levels were higher in hip fracture patients compared to 
healthy controls, and even higher in the lung injury subgroup 
compared to lung injury absent subgroup 

(Zhang et al., 2017) 

Sepsis     

 Severe sepsis Plasma mtDNA higher in patients with severe sepsis compared to healthy 
controls 
No significant difference in mtDNA between non-survivors and 
survivors in severe sepsis 

(Hsu et al., 2013) 

 Severe sepsis in the 
ED 

Plasma mtDNA higher on admission in severe septic patients than healthy 
controls; mtDNA higher in non-survivors than survivors, increased 
initially then gradual decrease after antimicrobial therapy, 
independent predictor of fatality. 

(Kung et al., 2012) 

 Sepsis Plasma mtDNA higher in septic patients compared to healthy controls (Bhagirath, Dwivedi 
and Liaw, 2015) 

 Septic shock Plasma mtDNA higher levels in patients with septic shock (Timmermans et al., 
2015) 

 Adult community-
acquired bacterial 
meningitis 

Plasma mtDNA levels were higher in patients with aseptic and in bacterial 
meningitis compared to healthy controls mtDNA levels fall during 
course of admission  
High mtDNA levels associated with poorer outcome in adult 
community-acquired bacterial meningitis 

(Lu et al., 2010) 

 Infectious SIRS Plasma mtDNA higher in septic patients compared to healthy controls (Garrabou et al., 2012) 

 Paediatric sepsis Plasma mtDNA higher in septic patients compared to critically ill non-septic 
and healthy control patients 

(Di Caro et al., 2015) 
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 Severe sepsis in the 
ED 

Plasma No significant difference in mtDNA between sepsis and healthy 
control cohorts 

(Puskarich et al., 2012) 

Critically unwell patients 

 ICU patients Plasma Increased mtDNA levels associated with ICU mortality (Nakahira et al., 
2013) 

 Critically Ill Patients 
(in ICU) 

Plasma  Patients with highest quartile of mtDNA in plasma had higher risk of 
dying.  
When stratified by TLR9 expression, only patients with high 
expression of TLR9 had an association between with mortality and 
mtDNA level. 

(Krychtiuk et al., 
2015) 

 Out of Hospital 
Cardiac Arrest 

Plasma Significantly higher levels in non-survivors than survivors (Arnalich et al., 2012) 
% 

Liver Failure     

 Acetaminophen 
induced acute liver 
failure 

Serum mtDNA higher in acetaminophen induced acute liver failure patients 
compared to healthy controls 
mtDNA higher in in non-survivors compared to survivors 

(McGill et al., 2014) 

 Acetaminophen 
induced acute liver 
injury 

Plasma mtDNA higher in patients with acetaminophen overdose with abnormal 
liver function tests compared to healthy controls and those with 
acetaminophen overdose but normal liver function tests 

(McGill et al., 2012) 

 Fulminant liver failure Serum Higher during acute liver injury (Marques et al., 2012) 

Heart disease     

 AMI Plasma Significantly higher mtDNA in STEMI patients than stable angina 
pectoris patients (reducing rapidly to similar levels 3 days after PCI) 
 

(Bliksøen et al., 2012) 

 AMI Plasma Significantly higher levels in AMI patients compared to healthy 
controls.  

(L. L. L. Wang et al., 
2015) 



1. Introduction                37 
 

Levels dropped to normal immediately post PCI. 

 AMI Plasma Significantly higher levels in acute AMI compared to healthy controls 
on admission 

(Qin et al., 2016) 

 T2DM with CAD Plasma Significantly elevated levels in T2DM compared to healthy controls. 
Higher levels in those with DM & CAD compared to those without CAD. 
mtDNA levels correlated with CRP in patients with CAD. 

(J. Liu et al., 2015) 

 Heart failure Plasma Higher levels of mtDNA in heart failure patients compared to age and 
sex matched healthy controls; no association with disease severity 

(Dhondup et al., no 
date) 

 Heart failure Plasma Higher levels of mtDNA in acute vs. chronic heart failure; in acute heart 
failure, mtDNA predicted mortality 

(Krychtiuk et al., 
2017) 

Stroke     

 Acute ischaemic 
stroke 

Plasma mtDNA levels higher in acute cerebral infarction than healthy controls 
No significant difference in mtDNA between good vs poor outcome 
cohorts 

(Lakra et al., 2011) 

 Subarachnoid 
haemorrhage 

Plasma No significant difference in mtDNA between subarachnoid 
haemorrhage and healthy control groups 

(Wang et al., 2013) 

 Intracerebral 
haemorrhage 

Plasma No significant difference in mtDNA between intracerebral 
haemorrhage and healthy control groups 
No correlation between mtDNA and disease severity 

(Wang et al., 2012) 

Malignancy     

 Breast Cancer Plasma Reduced levels of mtDNA in benign or malignant breast cancer 
compared to healthy controls 

(Kohler et al., 2009) 

 Ovarian Cancer Plasma & 
Serum 

Plasma: Significantly higher levels of mtDNA in ovarian cancer group 
compared to healthy controls and ovarian benign tumour group 
Serum: No significant difference between groups above 

(Zachariah, Schmid 
and Buerki, 2008) 
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 Testicular Germ Cell 
Cancer 

Serum mtDNA levels were significantly higher in patients with testicular 
cancer than healthy controls although it did not correlate with any 
clinicopathological variable of disease status 

(Ellinger et al., 2009) 

 Urological 
malignancies 

Serum mtDNA were significantly higher in ‘urological malignancies’ (bladder 
cell, renal cell and prostate cancer) 

(Ellinger et al., 2012) 

 Prostate Cancer Serum mtDNA could not distinguish between benign prostatic hypertrophy 
and prostate cancer. 
Patients with early biochemical recurrence post radical prostatectomy 
have higher mtDNA levels 

(Ellinger et al., 2008)  

 Ewing’s Sarcoma Serum mtDNA significantly lower in patients with Ewing’s sarcoma compared 
to healthy controls 

(Yu et al., 2012) 

 Lung Cancer Serum mtDNA significantly higher in lung cancer patients compared to those 
with benign lung diseases and healthy individuals and closely 
associated with TNM stage 

(Hou et al., 2013) 

 Advanced Prostate 
Cancer 

Plasma mtDNA levels are elevated in advanced prostate cancer patients and 
is associated with decreased survival.  

(Mehra et al., 2007) 

 Adenocarcinoma of 
the lung in patients 
receiving erlotinib 

Plasma Rise in mtDNA levels in patients with partial response; drop in mtDNA 
levels in those with progressive disease or no response. No correlation 
with progression free survival. 

(Huang et al., 2014) 

 Exposure to 
carcinogenic Hal-
Alkane-Based 
Pesticides 

Serum Exposure to these carcinogens was significantly associated with 
elevated serum levels of circulating mtDNA (case control study) 

(Budnik et al., 2013) 

 Renal Cell Carcinoma Plasma Higher levels in metastatic compared to non-metastatic patients and 
controls. 

(Lu et al., 2016) 
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HIV     

 HIV Plasma Higher levels in acute HIV infection, late presenters compared to long 
term non-progressors and healthy controls. Also correlated with viral 
load. 

(Cossarizza et al., 
2011) 

 Lipodystrophy in HIV 
patients treated with 
HAART 

Plasma Significantly higher levels in HIV infected vs non-infected individuals.  
Significantly higher levels in those with lipodystrophy compared to 
those without lipodystrophy at month 24. 

(Dai et al., 2015) 

 HIV 
 

Plasma No significant association between HIV disease status and mtDNA (Lauring et al., 2012) 
 

Inflammatory autoimmune conditions 

 Rheumatoid Arthritis Plasma 
 

Higher percentage of detectable levels in rheumatoid arthritis 
compared to controls 

(Hajizadeh et al., 
2003) $ 

 Granulomatosis with 
polyangiitis 

Serum Significantly higher levels in granulomatosis with polyangiitis 
compared to controls 

(Surmiak et al., 2015) 

Age & Exercise 

 Age Plasma mtDNA levels increased gradually after the fifth decade of life 
 

(Pinti et al., 2014) 

 Age Plasma No association with age but mtDNA associated with HLA-DR (Verschoor et al., 
2015) 

 Aging and ‘frailty’ Plasma Aging: no difference in mtDNA between younger and older subjects 
Frailty: mtDNA copy number directly correlated with frailty score 

(Jylhävä et al., 2013) 

 Exercise Plasma Reduced mtDNA in response to exercise (Shockett et al., 2016) 

 Male Volleyball 
Players 

Plasma Lower levels in participants in professional volleyball players 
compared to healthy nonathlete controls 

(Nasi et al., 2015) 
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Psychiatric disorders    

 Bipolar Disorder Serum No difference between bipolar disorder & healthy control groups 
Higher levels in bipolar disorder group compared to sepsis 

(Stertz et al., 2015) 

 Suicide attempters Plasma Higher plasma levels of mtDNA in suicide attempters compared with 
healthy controls 

(Lindqvist et al., 2016) 

 Major depressive 
disorder 

Plasma Higher plasma levels of mtDNA in major depressive disorder 
compared to controls 

(Lindqvist et al., 2018) 

 Major depressive 
disorder and biopolar 
disorder 

Plasma Lower plasma mtDNA levels in major depressive disorder and bipolar 
disorder compared to healthy controls 

(Kageyama et al., 
2018) 

Miscellaneous     

 Corrosive injury 
(gastrointestinal 
ingestion) 

Plasma Significantly higher mtDNA in mortality group vs survival group at 
presentation and after 12 hours 

(Chou et al., 2008) 

 Pulmonary Embolism Plasma Predictor of 15-day mortality (Arnalich et al., 2013) 
* 

 Autism Serum Significantly higher mtDNA in young autistic children compared to 
healthy controls 

(van Rossum et al., 
2010) 

 Haemodialysis Plasma Significantly higher levels in maintenance haemodialysis patients 
compared to healthy controls  

(Cao et al., 2014) 

 End-stage renal 
failure in Han 
population 

Plasma End-stage renal failure patients had higher mtDNA copy number (Zhang et al., 2016) 

     



1. Introduction                41 
 

 Low levels of ionising 
radiation 

Serum Higher levels in interventional cardiologists exposed to low levels of 
ionizing radiation compared to controls 

(Borghini et al., 2015) 

 Friedreich’s ataxia Plasma Significantly reduced mtDNA in Friedreich’s ataxia patients compared 
to healthy controls 

(Dantham et al., 
2016) 

 Non-haemolytic 
transfusion reaction 

Platelet 
concentrates 

Higher mtDNA copy number in non-haemolytic transfusion reaction 
platelet concentrate vs normal platelet concentrate 

(Yasui et al., 2016) 

 Cardiopulmonary 
bypass surgery 

Plasma Higher mtDNA post cardiopulmonary bypass; patients with post-
operative atrial fibrillation had greater increases in mtDNA post-
surgery 

(Sandler et al., 2018) 

 

 

Note: this table lists studies reporting mtDNA analysed by PCR on serum or plasma (i.e. circulating as a DAMP) in human diseases 

* earlier study in 2010 not included 

% letter 

# conference abstract only 

$ PCR rather than qPCR used  
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1.4 Hypothesis and aim 
 

Aim 

The aim of this thesis is to investigate the role of mtDNA in IBD.  

 

Hypotheses 

Primary hypothesis: Circulating mtDNA is elevated in IBD. (Chapter 2) 

 

Secondary hypotheses: 

• Other circulating mitochondrial DAMPs are elevated in IBD (Chapter 2) 

• Circulating mtDNA can be used as a novel biomarker in IBD (Chapter 3) 

• mtDNA is released locally at sites of inflammation in IBD (Chapter 4) 

 



   
 

 

 

 

 

 

 

 

 

 

CHAPTER 2: 
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MITOCHONDRIAL 

DAMPS IN IBD 
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2.1 Introduction 
 

The pathogenesis of IBD is complex and remains to be fully elucidated. One 

area of limited exploration thus far has been the role of DAMPs in instigating 

and/or propagating sterile inflammation which has been found to be relevant 

in several other inflammatory diseases. Mitochondrial DAMPs are of particular 

interest given their high inflammatory potential.  

 

The mitochondrial DAMP that has attracted the most interest thus far is 

mtDNA, which is highly enriched with hypomethylated CpG repeats resembling 

bacterial DNA. A further shared feature of the mitochondria with bacteria is the 

production of short N-formylated peptides. Bacterial and mitochondrial proteins 

are the only source of N-formylated peptides in nature and mitochondrial 

formylated peptides (also released as mitochondrial DAMPs post cellular 

rupture) have been found to have important roles in sterile inflammation 

especially as chemoattractants.  

 

Mitochondrial DAMPs can be detected in the circulation and have been found 

to be raised in a number of inflammatory diseases. These include diseases of 

acute and chronic inflammation such as trauma, sepsis, AMI, T2DM and 

stroke. Although many DAMPs are elevated in IBD, there has been no data to 

date demonstrating elevated levels of mitochondrial DAMPs in IBD. 

Mitochondrial DAMPs are of particular interest in IBD given the recent findings 

by our group of gut mitochondrial dysfunction leading to loss of epithelial 

barrier function and development of colitis (Ho et al., 2018).  
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This chapter deals with the primary aim of this thesis which is to test the 

hypothesis that patients with active inflammatory bowel disease have higher 

levels of circulating mitochondrial DAMPs compared to non-IBD controls. For 

the reasons previously outlined, it was determined that a well characterised, 

prospectively recruited cohort of IBD patients was required. The recruitment 

inclusion criteria were kept deliberately broad given the role of mitochondrial 

DAMPs in IBD has yet to be defined. 

 

mtDNA was chosen as the primary mitochondrial DAMP for investigation for 

several reasons. A paper published in Nature in 2010 (Zhang et al., 2010) 

observed elevated levels of mtDNA in patients with SIRS and sparked 

significant interest and further research in this area as a potentially functional 

and clinically useful biomarker (Boyapati et al., 2017). Furthermore, colleagues 

at the Centre for Inflammation Research (Edinburgh) had recently developed 

and optimised the qPCR protocol for quantification of mtDNA (Dorward, 2014) 

based on the method initially described years previously (Chiu et al., 2003) 

and subsequently used by Zhang et al. 

 

To show corroborative evidence of mitochondrial DAMPs being released into 

the circulation, a second mitochondrial DAMP (N-formylated peptides) was 

also measured in some patients. 
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2.2 Materials & Methods 
 

2.2.1 Study design 

 
This was a single centre, prospective cohort study. 

 

2.2.2 Funding and ethics 
 

This work was supported by MRC grant G0701898, Crohn’s and Colitis United 

Kingdom (UK) M16-1 to Gwo-tzer Ho; Edinburgh Gastrointestinal Trustees 

Grant (2014) to Ray Boyapati and Wellcome Trust grant WT096497 to David 

Dorward and Adriano Rossi. 

 

All clinical and biological material/data acquisition were carried out under 

Lothian Bioresource ethics approval 15/ES/0094. 

 

2.2.3 Recruitment of study participants 
 

Individuals were recruited from outpatient and inpatient settings from the 

Gastrointestinal Unit, Western General Hospital, Edinburgh between April 

2014 and November 2015. Patients with IBD of either major type (CD or UC) 

and with a range of severity (from quiescent disease in the outpatient clinic 

through to severe disease requiring intravenous steroids on the inpatient 

wards) were considered eligible for inclusion. In addition, individuals with IBS 

or with no history of IBD and no gastrointestinal symptoms were recruited as 
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non-IBD symptomatic controls. A call was made for healthy control volunteers 

at the Queens Medical Research Institute, Edinburgh (those with no history of 

gastrointestinal illness/diagnosis or other known chronic health conditions). 

Given the prospective design of our study, we set out to carry out sex- and 

age-matching. Healthy controls were recruited between January 2015 and 

June 2015. Individuals were excluded if they were younger than 18 or were 

unable to give written consent. 

 

For the IBD cohort, recruited patients fulfilled the criteria of CD or UC based 

on clinical, endoscopic and histological criteria (Lennard-Jones, 1989). IBS 

individuals (non-IBD symptomatic controls) had altered bowel habit and were 

defined following normal ileo-colonoscopy, stool calprotectin and blood 

parameters.  

 

2.2.4 Information/samples collected 
 

At initial contact, patients were provided with a patient information sheet and 

provided time to consider participation in the study. If the patient agreed to 

participate, two consent forms (one for use of questionnaire data and one for 

use of samples) and a comprehensive IBD questionnaire (Appendix B) was 

completed at first recruitment. The comprehensive IBD questionnaire included 

information on ethnic origin, country of birth, social history, smoking/alcohol 

history, childhood exposures, family and medical history, IBD history, 

medication history and pregnancy status.  
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An additional clinical activity form (Appendix C) was completed with the 

assistance of the researcher at the time of each sample. This form included 

information on weight, temperature, heart rate, current medications, and 

information on clinical assessment of disease activity as per two validated 

scoring indices: the Simple Clinical Colitis Activity Index (SCCAI) for UC 

(Walmsley et al., 1998) and Harvey Bradshaw Index (HBI) for CD (Harvey and 

Bradshaw, 1980) (Appendix A). Completed forms were stored securely for 

entry into a database. 

 

Where appropriate, clinical bloods (full blood examination, albumin and CRP) 

were collected at the time of recruitment and blood sampling. Where multiple 

samples were taken for a single patient, the mean values were used in any 

per-patient analysis. 

 

Overall, the aim was to collect clinical and biochemical data to measure 

disease type, activity, severity and extent. A further aim was to collect some 

longitudinal data to assess for variation in mtDNA over short and long time 

frames and thus, for some patients, multiple sample points were taken.  

 

2.2.5 Clinical disease activity stratification 
 

For UC and CD, disease activity was classified using the SCCAI and HBI 

respectively (Appendix A). Clinical remission was defined as SCCAI of less 

than or equal to 2 for UC patients, and HBI of less than 5 for patients with CD.  
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Patients with clinical active disease (i.e. not in clinical remission) were further 

classified into severe disease if they required intravenous steroids for CD or 

fulfilling the modified Truelove & Witts’ criteria for ASUC (Appendix A).  

 

2.2.6 Plasma and serum sampling & processing 
 

Venepuncture was performed by a trained clinician with a 21-gauge butterfly 

needle. 12-18mL of blood including at least 9mL in an 

ethylenediaminetetraacetic (EDTA) acid tube (Vacuette ®) for plasma and 1 x 

serum tube (Vacuette ®) was collected and processed within 2 hours of 

collection.  

 

EDTA blood was centrifuged at 1000g for 10 minutes at 4oC and the plasma 

fraction was transferred to a 15mL Falcon ® tube; this was then centrifuged at 

5000g for 10 minutes at 4oC to remove platelets and microparticles in order to 

achieve ‘cell free plasma’. 

 

Serum was stored for 1-hour storage at 4oC for clotting and then centrifuged 

at 2,500g for 10 minutes at 4oC. Both serum and plasma fractions were divided 

into 0.5mL aliquots and stored at -80oC until further use. 

 

At the same venepuncture, bloods requested by clinicians caring for the patient 

(in the IBD or IBS cohorts) were taken and sent to the Western General 

Hospital (Edinburgh) clinical laboratory for full blood examination, albumin and 

CRP.   
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2.2.7 Mitochondrial DNA 
 

The methods described below were largely developed and optimised by Dr 

David Dorward at the MRC Centre of Inflammation Research (Edinburgh) as 

part of his research into the contribution of mitochondrial formylated peptides 

to the pathogenesis of acute lung injury (Dorward, 2014; Dorward et al., 2017). 

The methods with amendments are reproduced here with permission.  

 

2.2.7.1 Isolation of DNA from serum & plasma  

DNA was isolated from serum and plasma using an automated robotics 

platform (QIAcube, Qiagen Qiagen, Valencia CA, USA) at the same time to 

ensure uniformity. QIAamp DNA Blood mini kits were used as per 

manufacturer’s instructions (blood and body fluids protocol, Qiagen) as 

described previously (Chiu et al., 2003; Zhang, Itagaki and Hauser, 2010).   

 

Plasma and serum samples were initially centrifuged at 9,500g for 10 minutes 

and 200µL of sample added to 20µL QIAGEN protease in a 1.5mL Eppendorf 

tube.  After the addition of 200µL of Buffer AL samples were vortexed for 15 

seconds and incubated at 56°C for 10 min.  Ethanol was then added (200µL), 

samples vortexed, transferred to a QIAamp mini spin column and centrifuged 

at 6,000g for 1 min.  The collection tube and elute were discarded and the 

column placed in a clean tube.  500µL of Buffer AW1 was then added, samples 

centrifuged again at 6,000g for 1 minute and flow through discarded.  Following 

the addition of 500µL Buffer AW2 columns were centrifuged at 16,000g for 3 
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minutes and then again for a further 1 minute to ensure removal of any ethanol 

carry-over.  Spin columns were transferred to clean 1.5mL Eppendorf tubes 

and 50µL of Buffer AE added to each filter. Following 5 minutes incubation at 

room temperature samples were centrifuged at 6,000g for 1 minute and the 

elute stored at -20°C until analysed. 

 

2.2.7.2 Developing standard curves for qPCR 

 

Isolation of mitochondria 

Whole mitochondria were extracted from cultured HepG2 cells selected due to 

their high metabolic capacity and abundant mitochondria. Mitochondria were 

extracted from cultured HepG2 cells using the Mitochondrial Isolation kit for 

cultured cells (Sigma) using the manufacturer’s instructions.  

 

Adherent HepG2 cells were detached from their cell culture flasks with trypsin-

EDTA and RPMI with 10% FCS was added. Cells were pelleted at 600g for 5 

minutes at 2°C and then washed (cells were resuspended in ice cold PBS and 

counted using a haemocytometer, then pelleted at 600g for 5 minutes). 2x107 

cells were used for each mitochondrial preparation. The wash step was then 

repeated without counting the cells. 2mL of the prepared Extraction Buffer A 

was added and incubated on ice for 15 minutes. Cells were then homogenised 

using a Dounce homogenizer. Homogenisation was performed gradually and 

followed by staining an aliquot with trypan blue and counting the cells under a 
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microscope, diluting if necessary to count the cells. An additional 5 strokes 

were performed until at least 50% of cells were damaged.  

 

The homogenate was then centrifuged at 600g for 10 minutes at 2°C. The 

supernatant was then transferred to a fresh tube and centrifuged at 11,000g 

for 10 minutes at 2°C. The supernatant was removed, and the pellet was 

resuspended in 200 µL of CelLytic M Cell Lysis Reagent with Protease Inhibitor 

Cocktail (1:100 [v/v]). Isolated mitochondria were stored at -20oC until further 

use. 

 

Extraction of DNA from isolated mitochondria  

DNA was extracted from isolated mitochondria using the QIAamp DNA Micro 

Kit (Qiagen, Valencia CA, USA) as per the manufacturer’s instructions.  

 

50µL of media containing isolated mitochondria was added to 50µL of Buffer 

ATL in a 1.5mL Eppendorf tube.  10µL of proteinase K and 100µL of Buffer AL 

was then added, and mixed by pulse-vortexing for 15 seconds and incubated 

at 56°C for 10 min.  50µL of ethanol (96-100%) was then added, vortexed, and 

incubated at room temperature (15-25°C) for 3 minutes. The entire lysate was 

then transferred to a QIAamp mini spin column and centrifuged at 6,000g for 

1 minute. The collection tube and elute were discarded and the column placed 

in a clean tube.  500µL of Buffer AW1 was then added, centrifuged again at 

6,000g for 1 minute and column placed in a clean tube. Following the addition 

of 500µL Buffer AW2 columns were centrifuged at 6,000g for 1 minute and 
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then the column was placed in a clean tube. This was then centrifuged at 

20,000g for 3 minutes to dry the membrane completely. Spin columns were 

transferred to clean 1.5mL Eppendorf tubes and 50µL of Buffer AE added to 

each filter. Following 5 minutes incubation at room temperature, samples were 

centrifuged at 20,000g for 1 minute and the elute stored at -20°C until 

analysed. 

 

Purity of the DNA was determined using Nanodrop 2000 spectrophotometer 

(ThermoScientific, Wilmington, DE, USA) and all DNA samples had 

OD260/OD280 values of 1.7-2.0.   

 

Amplification of mtDNA primer products 

Conventional PCR was performed using primers against mtDNA coding for 

nicotinamide adenine dinucleotide dehydrogenase (ND2) and cytochrome C 

oxidase subunit III (COXIII). COXIII and ND2 primers were selected as primer 

sequences (Appendix D) as they have been previously described for 

quantification of mtDNA (Lu et al., 2010; Zhang et al., 2010) and are specific 

for human mtDNA. Primers were blasted against human genome as well as 

known bacteria to ensure selectivity for human mtDNA 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/).  

 

mtDNA primer products were amplified from isolated mtDNA by conventional 

PCR.  
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The reaction mix contained: 

• 2x PCR master mix    50μl 

• 100μM forward primer  1μl 

• 100μM reverse primer  1μl 

• DNA      10μg  

• ddH2O     Added for final volume of 100μl 

 

PCR conditions were  

• Stage 1   95oC for 2 minutes 

• Stage 2    40 cycles of 95oC for 30 seconds,  

   58oC for 30 seconds  

   72oC for 30 seconds 

• Stage 3   72oC for 5 minutes 

 

Primer validation 

To confirm the PCR product size was as expected, the PCR product was run 

on a 4% agarose gel (2g of agarose resuspended in 50mL 1x TBE with 5μl Gel 

Red added to the solution once the agarose dissolved). 10μl of PCR product 

was used and samples run next to a 100bp DNA ladder. The gel was run at 

120V for 55-60 minutes until the leading edge reached the distal gel edge with 

products subsequently visualised using an ultraviolet illuminator (UV 

Transilluminator, UVP Inc). PCR product size was as expected (103bp for 

COXIII, 90bp for ND2) (Figure 2.1). 
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Figure 2.1: Gel confirming amplified PCR primer products 

 

In addition, ND2 and COXIII mtDNA primer specificity has been previously 

demonstrated within biological systems by demonstrating minimal PCR 

products seen in mitochondrial depleted cells (Dorward, 2014). In brief, A549 

and Beas 2B cells were cultured with ethidium bromide for 6 weeks to deplete 

mitochondria as described (King and Attardi, 1989; Crouser et al., 2009) after 

which DNA and protein were extracted. Primer specificity was demonstrated 

with minimal PCR products seen in mitochondrial depleted (Ro) cells following 

agarose gel electrophoresis relative to untreated control cells cultured for the 

same duration.  Furthermore, there was no observable loss of nuclear DNA 

content as assessed by qPCR. 
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Generation of Standard Curves 

Standard curves for absolute quantification of circulating free mtDNA were 

generated using the initial method described for quantification of plasma 

mtDNA (Chiu et al., 2003). The QIAgen PCR Purification kit (Qiagen) was used 

on amplified primer products (as described above) in accordance with 

manufacturer’s instructions. In brief, 500µL of Buffer PB was added to 100µL 

PCR product, transferred to a spin column and centrifuged at 6,000g for 1 

minute before 750µL Buffer PE was added and the column centrifuged. The 

DNA was then eluted with 50µL Buffer EB into a sterile 1.5mL Eppendorf and 

stored at -20°C until use. Isolated DNA was quantified by nanodrop 

(ThermoScientific) and serially diluted. mtDNA concentration in copies/µL was 

determined using the formulae described below in Material and Methods 

section 2.2.7.3. 

 

2.2.7.3 qPCR protocols for absolute quantification  

Primers (MWG Eurofins) were suspended at 100μM stock solution with DEPC-

treated water and stored at -20°C prior to use.  Subsequently, 20x primer 

solution (1.8μM) was made (3.6μL forward, 3.6μL reverse, 192.8μL DEPC-

H2O).  In MicroAmp® Optical 384-Well Reaction Plates (Applied Biosystems) 

7μl of master mix containing 5μL 2x SYBR Green Fast mix (Applied 

Biosystems), 0.5μL 20x primer mix and 1.5μl DEPC-treated water was mixed 

with 3μl of isolated DNA sample or standard.  All reactions were carried out in 

duplicate, and discordant results retested. All plates contained wells with no 

DNA as a negative, no template control.   
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qPCR reactions were conducted in an ABI7900 Fast Real-Time PCR System 

(Applied Biosystems) with the following settings:  

 

• Stage 1   95°C for 20 seconds 

• Stage 2   40 cycles of 95°C for 3 seconds & 60°C for 30   

  seconds 

• Melt curve   95°C for 15 seconds, 60°C for 1 minute, 95°C for  

   15 seconds, 60°C for 15 seconds 

 

Absolute quantification of mtDNA was determined relative to the standard 

curve based on the following equation (as described by Chiu et al. (Chiu et al., 

2003)): C = Q x VDNA/VPCR x 1/Vext 

 

• C  target concentration in plasma or serum (copies per millilitre)  

• Q  target quantity (copies) determined by sequence detector in PCR  

• VDNA  total volume of DNA obtained after extraction, typically 50μl per  

extraction 

• VPCR  volume of DNA solution used for PCR, typically 3μl  

• Vext  volume of plasma, typically 200μl 

 

Amplification efficiency of between 90 and 110% was taken as acceptable 

where slope refers to the gradient of the standard curve: (Efficiency = 10(-1/slope) 

– 1). The coefficient of determination value was also calculated with r2>0.985.  

SYBR green analysis meltcurves were run to identify the presence of any 

primer dimer peaks. 
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2.2.8 Mitochondrial formylated peptides 
 

Mitochondrial N-formylated peptides are functionally similar to their bacterial 

counterparts acting as primarily as neutrophil chemoattractants (Carp, 1982). 

To provide further corroborative evidence to our mtDNA data, we employed a 

mass spectrometric approach to identify and quantify N-mitochondrial 

formylated peptides in a subset of 5 acute severe UC vs. 5 non-IBD controls. 

The 10 patient samples for analysis were picked at random from the recruited 

patient population of ASUC (5 samples) and non-IBD (5 samples).   

 

Mass spectrometry was performed by Dr Mary Doherty and Professor Phil 

Whitfield at the University of the Highland and Islands using their previously 

optimised protocol as outlined in (Dorward et al., 2017). The methods are 

reproduced here with permission. 

 

Synthetic peptides  

N-formylated hexapeptides were identified on the basis of their accurate mass, 

retention times and characteristic fragmentation patterns compared to custom 

synthesised standards (Peptide Protein Research Ltd, Fareham, UK). The 

hexapeptide standards of the N-terminal fragments of each of the 13 

mitochondrial formylated peptides were based on sequences previously 

described (Rabiet, Huet and Boulay, 2005) (Appendix E).  They were 

resuspended in methanol:H2O (1:1) to a 1mg/mL stock solution, serial dilutions 

using 0.5% acetic acid made and analysed by LC MS/MS. 
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Mass Spectrometry analysis of standard peptides 

The standards were first infused into the mass spectrometer to determine the 

molecular ion and then each fragmented using both collision induced 

dissociation (CID) and higher collision dissociation (HCD). A 5µL aliquot of 

each sample was analysed by LC-MS/MS using a Thermo LTQ-Orbitrap XL 

LC-MSn mass spectrometer equipped with a nanospray source and coupled to 

a nanoUPLC (Waters nanoAcquity) The peptides were loaded onto a 

Symmetry C18 trap column (5µm particle size, 180µm x 20mm, Waters) and 

then were separated using a BEH130 C18 analytical column (1.7µM particle 

size, 75µm x 250mm) with an acetonitrile/water gradient and MS spectra 

collected using data-dependent acquisition in the range m/z 400-1300. 

Peptides were fragmented using both CID and HCD. A mixture of the standard 

peptides was also prepared and analysed in the same way. The analyses were 

repeated at a range of concentrations and standard curves plotted for the 

peptides analysed individually (500fg-500pg) and as the combined samples 

(250fg-250pg on column).  

 

Separation of protein and peptide containing fractions from patient 

plasma 

Plasma samples were each centrifuged at 13,000rpm for 1 minute to remove 

any residual cellular debris.  To precipitate proteins 100µL sample was added 

to 1000µL acetone and incubated at -20°C for 1 hr.  Following centrifugation 

at 13,000 rpm for 1 minute the peptide-rich acetone layer was aspirated and 

acetone then evaporated at 40°C in a Speed Vac for 1 hr until approximately 



2. Circulating mitochondrial DAMPs in IBD 61 
 

50µL of acetone remained.  Peptide samples were diluted either 10- or 100-

fold in 0.5% acetic acid then centrifuged at 13,000rpm for 4 minutes prior to 

analysis as described for the standard peptides.  

 

Analysis of protein-derived peptides by LC-MS/MS  

Plasma samples (100µL) were acetone precipitated, dried down under vacuum 

and reconstituted in 0.5% acetic acid. Peptides were then analysed by LC-

MS/MS in positive ion mode using a Thermo LTQ-Orbitrap XL mass 

spectrometer (Hemel Hempstead, UK) coupled to a Waters nanoAcquity 

UPLC system (Manchester, UK) with a linear gradient over 39 minutes (mobile 

phase A: 0.5% acetic acid in water; mobile phase B: 0.5% acetic acid in 

acetonitrile). Quantification was achieved using a corresponding stable isotope 

labelled internal standard and calibration curve for each N-formylated 

hexapeptide. 

  

The peptides were separated using BEH130 C18 trapping and analytical 

columns with an acetonitrile/water gradient and MS spectra collected using 

data-dependent acquisition in the range m/z 400-1300. Peptides were 

fragmented using both CID and HCD and the data analysed using 

ProteomeDiscoverer for identification MaxQUANT for relative quantification. 

 

  



2. Circulating mitochondrial DAMPs in IBD 62 
 

2.2.9 Statistical Analysis 
 

Data are presented as numbers, percentages, means ± standard error of the 

mean (SEM) and medians ± interquartile range (IQR) for parametric and non-

parametric data respectively. Student t- and Mann-Whitney statistics were 

used for parametric and non-parametric data respectively. The sensitivity, 

specificity, and likelihood ratio for mtDNA, CRP and albumin levels to predict 

the need for colectomy in ASUC were calculated using receiver operator 

characteristic (ROC) curve analysis. Area under ROCs curves (AUROCs) 

were calculated for each biomarker, and differences between AUROCs 

compared using the DeLong method. Kaplan – Meier survival analysis was 

used to compare the course of disease between patients with high and low 

mtDNA levels. 

 

Multivariate logistic regression was performed to assess variables predictive 

of high mtDNA. Wilcoxon matched-pairs signed rank test was used to 

determine the difference in matched pre- and post-colectomy mtDNA levels 

and matched faecal mtDNA levels using two protocols. The Delong method 

was used to compare AUROCs for ability to predict colectomy. Spearman’s 

correlations were calculated to evaluate the relationship between mtDNA level 

and other biochemistry, and between COXIII and ND2 qPCR results.  

 

Statistical analyses were performed using Graphpad Prism version 7 

(Graphpad Software, San Diego, California, USA) and SPSS version 22 (IBM 

Corp., Chicago, USA). Two-sided p values of <0.05 were considered 

statistically significant. 
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2.3 Results 
 

2.3.1 Study recruitment  
 

97 IBD patients (67 UC and 30 CD patients), and 40 non-IBD controls (20 

healthy [HC] and 20 IBS controls) were prospectively recruited to the study. 

The first participant was recruited in August 2014 and the final participant in 

June 2015 (Figure 2.2) 

 

 

Figure 2.2: Recruitment of IBD, non-IBD and HC cohorts over time 

 

In total, there were 160 sample points for the 97 IBD patients. 58 patients had 

one sample point, 27 patients had two sample points, 5 patients had three 

samples points, 2 patients had four sample points and 5 patients had five 

sample points. Each healthy control and IBS control had one sample point.  
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2.3.2 Baseline characteristics 
 

The baseline characteristics of the IBD (CD and UC) and Control (HC and IBS) 

cohorts are summarised in Table 2.1. There were no statistically significant 

differences between the cohorts based on age, sex or smoking status. 

 

 IBD Controls p 
value 

 
CD UC HC IBS  

n 30 67 20 20  

Age 37 (27-44) 36 (28-51) 36 (32-46) 33 (27-42) NS 

M / F 17 / 13 44 / 23 10 / 10 13 / 7 NS 

Current smoker 26% 21% 15% 25% NS 

Table 2.1: Demographic details of CD, UC, HC and IBS cohorts; all p > 0.05 

(one-way ANOVA). NS: not significant 

 

Ambulatory (outpatients) were divided into remission and active disease based 

on the HBI for CD and the SCCAI for UC (Appendix A). Patients were further 

categorised into those with severely active disease (hospitalised and receiving 

intravenous steroids for CD; and hospitalised, receiving intravenous steroids 

and meeting modified Truelove and Witts’ criteria [Appendix A] for UC). The 

baseline biochemistry and HBI/SCCAI of the IBD cohort based on IBD type 

and activity is presented in Table 2.2.  
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Crohn’s Disease 

 Clinical 
Remission & 
Ambulatory 

Clinically 
Active & 
Ambulatory 

Severely active 
(hospitalised, 
IV Steroids) 

Hb (g/dl) 145 (137-151) 156 (138-158) 130 (125-137) 

WCC (x109/L) 7.4 (5.4-15.1) 10.9 (7.7-11.9) 8.75 (7.4-11.6) 

Platelets (x109/L) 253 (218-295) 509 (300-414) 334 (279-378) 

CRP 3.5 (1-7.5) 5 (3.5-8) 26 (12-62) 

Albumin 38 (33-40) 38 (37-38) 29 (27-34) 

HBI 1 (0-2) 7 (6-9) 7 (4-14) 
 

Ulcerative Colitis 

 Clinical 
Remission & 
Ambulatory 

Clinically 
Active & 
Ambulatory 

Severely active 
(hospitalised, 
IV Steroids) 

Hb (g/dl) 136 (128-151) 131 (123-146) 114 (104-130) 

WCC (x109/L) 6.3 (4.7-7.5) 7.7 (6.3-8.8) 11.3 (8.3-14.6) 

Platelets (x109/L) 292 (252-303) 305 (256-335) 414 (288-501) 

CRP 2 (2-5) 3 (2-17) 21 (10-54) 

Albumin 39 (38-40) 38 (35-40) 30 (25-34) 

SCCAI 0 (0-0) 6 (4-8) 7 (4-10) 

Table 2.2: Baseline characteristics of IBD cohorts by IBD type & activity. Data 

presented as median (±IQR).   

 

As expected, values for biochemistry and clinical activity indices differed 

between various cohorts as stratified by clinical activity (using Mann-Whitney 

tests for comparison of non-parametric data). Groups are referred to as ‘clinical 

remission’, ‘clinically active’ and ‘severely active’ below. 
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Haemoglobin was significantly lower in severely active CD patients compared 

to those in clinical remission (p = 0.04). For UC patients, haemoglobin was 

significantly lower in severely active patients compared to clinical remission 

(p=0.0007) and clinically active disease (p=0.0006). WCC was significantly 

higher in severely active UC patients compared to clinical remission 

(p=0.0006) and clinically active disease (p=0.0006).  

 

CRP levels in severely active CD disease was significantly higher than those 

in clinical remission (p=0.0029). Severely active UC patients had significantly 

higher CRP values than those in clinical remission (p=0.039) and active 

disease (p<0.0001). CD and UC patients with severely active disease had 

significantly lower albumin levels than those in clinical remission (CD p=0.017, 

UC p<0.0001) and active disease (CD p=0.0029; UC p<0.0001). Platelets 

were higher in the UC severely active disease group compared to clinical 

remission (p=0.0057) and active ambulatory disease (0.0022)  

 

As per stratification, HBI was lower in CD patients with remission compared to 

clinically active disease ambulatory (p=0.0003) and severely active disease 

(p<0.0001) but not different between clinically active and severely active 

(hospitalised) groups. SCCAI was lower in UC patients with remission 

compared to clinically active disease ambulatory (p<0.0001) and severely 

active disease (p<0.0001) but not different between clinically active and 

severely active (hospitalised) groups. 

 



2. Circulating mitochondrial DAMPs in IBD 67 
 

2.3.3 Reproducibility of the mtDNA assay 
 

Duplicates measurement of mtDNA from plasma using COXIII primers were 

analysed on the same PCR plate. The coefficient of variation was calculated 

to be 7.7% (95% CI, 6.9%-8.6%). 

 

2.3.4 Plasma and serum mtDNA correlation 

 

mtDNA levels from paired serum and plasma samples (i.e. from the same 

patient at the same time) were compared in a subset of samples (n=114). 

There was a moderate correlation between plasma and serum mtDNA data for 

COXIII (Figure 2.3, Spearman’s r=0.46) and ND2 genes (Figure 2.4, 

Spearman’s r=0.52). 

 

Figure 2.3: Correlation between serum and plasma mtDNA levels for analysed 

samples using COXIII primers (r=0.46, p<0.0001). 
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Figure 2.4: Correlation between serum and plasma mtDNA levels for analysed 

samples using ND2 primers (r=0.52, p<0.0001). 

 

Plasma was chosen as the sample for main analysis due to reasons discussed 

in detail in Section 2.4.1.1. In brief, most published studies (including the major 

studies in this area) examining the role of mtDNA in circulation use plasma, 

and there is a risk of post-sampling liberation of DAMPs with leukocyte rupture 

in serum processing.  

 

Herein, unless otherwise specified, mtDNA relates to levels detected in 

plasma. 
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2.3.5 Correlation between mtDNA genes in plasma 

 

qPCR was performed using 2 sets of primers flanking COXIII and ND2 genes 

of the mitochondrial genome. COXIII and ND2 data were highly correlated in 

plasma (r=0.84; p<0.0001) (Figure 2.5) and serum (r=0.93; p<0.0001) (Figure 

2.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5:  Correlation between plasma mtDNA (copy/µL) for all samples 

using 2 different primers COXIII and ND2 (r=0.84, p=<0.0001). 
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Figure 2.6:  Correlation between serum mtDNA (copy/µL) for all samples using 

2 different primers COXIII and ND2 (r=0.93, p=<0.0001). 

 

COXIII amplification efficiency as assessed by qPCR analysis of serial 

dilutions of DNA is slightly higher than ND2 (95% vs 96.4%)(Dorward, 2014). 

Given the strong correlation between COXIII and ND2 genes, COXIII data was 

chosen for further analysis and is presented herein. 
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2.3.6 Higher circulating mtDNA plasma levels in CD 

and UC 
 

Overall, we found significantly higher levels of circulating cell-free plasma 

mtDNA in IBD (167.8 copies/µL [IQR 78.06-387.2]) compared to HC (64.6 

copies/µL [IQR 51.6-104]) (p=0.0002) and IBS (44.6 copies/µL [IQR 27.9-

134.7]) (p<0.0001). There was no difference between HC and IBS, and these 

groups were combined as non-IBD controls in further analysis (Figure 2.7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Plasma mtDNA (copy/µL) in IBD, HC and IBS (n= 97, 20 and 20 

samples respectively). Median ± IQR. 
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Plasma mtDNA levels were significantly higher in both UC (172.3 copies/µL 

[IQR 74.4-393.2]) (p<0.0001) and CD (136.7 copies/µL [IQR 88.0-370.9]) 

(p<0.0001) compared to non-IBD controls (61.5 copies/µL [IQR 32.8-104]) 

(Figure 2.8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Plasma mtDNA (copy/µL) in CD, UC and non-IBD (n= 30, 67 and 

40 samples respectively). Median ± IQR.  
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2.3.7 Mitochondrial N-formylated peptides increased 

in ASUC 
 

A screen for the free N-terminal hexapeptides of the thirteen-known 

mitochondrial encoded proteins (Appendix E) confirmed the presence of five 

N-formylated termini (fMMYALF, fMTPMRK, fMNPLAQ, fMNFALI and 

fMTMHTT) in acute severe UC plasma samples which were not detected in 

non-IBD controls. When quantified with synthetic standards, we found that the 

concentrations of each of these formylated peptides was significantly elevated 

(p<0.01) in acute severe UC (Individual values: Figure 2.9; Summary data: 

Figure 2.10). 
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Figure 2.9: Individual values of mitochondrial formylated peptide quantification 

in 5 UC (white bars) vs. 5 non-IBD controls (black bars) for fMMYALF, 

fMTPMRK, fMNPLAQ, fMNFALI and fMTMHTT). 
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Figure 2.10: Summary data of mitochondrial formylated peptide quantification 

in 5 UC vs. 5 non-IBD controls (*p=<0.01 for fMMYALF, fMTPMRK, fMNPLAQ, 

fMNFALI and fMTMHTT). Mean ± SEM. 

 

  



2. Circulating mitochondrial DAMPs in IBD 76 
 

2.3.8 Summary of results 
 

• The study prospectively recruited 97 IBD patients (67 UC and 30 CD) 

and 40 non-IBD controls (20 HC and 20 IBS).  

 

• We have for the first time shown that:  

 

o mtDNA is elevated in the circulation of patients with IBD (in both 

CD and UC) when compared to non-IBD controls.  

 

o N-formylated peptides (a second mitochondrial DAMP) is 

elevated in patients with ASUC compared to controls.  

 

• We found a strong correlation between two mitochondrial specific genes 

(ND2 and COXIII) in mtDNA quantification 

 

• There was a moderate correlation between plasma and serum mtDNA 
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2.4 Discussion 
 

2.4.1 Sample type, processing and quantification of 

mtDNA  
 

2.4.1.1 Plasma or serum 

Most published studies in inflammatory diseases have used plasma for 

quantification of circulating mtDNA. In 2003, a sentinel report suggested a 

standardised quantification method of circulating mtDNA using plasma (Chiu 

et al., 2003). Serum DNA concentration has been reported as 3 to 24 fold 

higher compared to plasma (Lo et al., 1998; Lee et al., 2001; Lui et al., 2002; 

Zhong et al., 2007). One study reported circulating cell free nuclear DNA as 

being even up to 45 times as high in serum than in plasma (Xia et al., 2009), 

and mtDNA being 12 fold higher. The higher levels of DNA in serum compared 

to plasma is likely due to the release of intracellular DNA in the process of 

fragile cell lysis from clotting (Lee et al., 2001; Thijssen et al., 2002). For this 

reason, many have suggested that plasma better reflects in vivo levels of 

circulating cell free DNA.  

 

Serum samples appear to produce more variable DNA quantification results 

compared to plasma (Boddy et al., 2005). One contributing factor is likely to 

be that plasma is less affected by delays in processing than serum. DNA 

concentrations in serum samples were 2.3 fold higher than plasma when 

processed immediately compared to between 3.8 to 4.8 fold higher when 
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stored for 2-8 hours at room temperature and 3 fold higher when stored for 24 

hours at 4oC (Jung and Klotzek, 2003). 

 

Umetani et al. examined this issue in more detail with a study comparing serum 

and plasma DNA levels in patients with various cancers (Umetani, Hiramatsu 

and Hoon, 2006). The authors found serum had six-fold higher circulating DNA 

levels compared to plasma in the same patients and the amount of DNA in 

paired serum and plasma specimens was positively correlated (r=0.72, 

p=0.0002). It seems likely that both leukocyte cell lysis during serum 

separation and the unequal distribution of DNA during separation from whole 

blood contribute to the higher levels of DNA detected in serum compared to 

plasma although the precise relative contributions remain unclear (Umetani, 

Hiramatsu and Hoon, 2006). Furthermore, it is possible that different patient 

populations and diseases may influence how well circulating DNA correlates 

between serum and plasma.  

 

Given the large differences in size and structure of nuclear DNA to mtDNA (3 

billion base pairs compared to 16,569 base pairs; lack of introns and long 

noncoding sequences in mtDNA), it may be problematic assuming that the 

data presented above would apply to mtDNA. However, there is limited direct 

evidence relating to the differences in detected levels of mtDNA in serum and 

plasma. Lauring et al. noticed that in their healthy blood donors, mtDNA levels 

as determined by qPCR in the serum and plasma was similar, although this 

data was not presented (Lauring et al., 2012). Conversely, Zachariah et al. 
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performed an analysis of serum and plasma mtDNA levels in patients with 

ovarian cancer and found that although there was a difference between 

mtDNA in healthy controls / benign tumours compared to the ovarian cancer 

group in plasma, this difference was not evident in serum (Zachariah, Schmid 

and Buerki, 2008). The serum levels of mtDNA were significantly higher 

compared to plasma possibly due to release of cellular DNA during clotting.  

 

2.4.1.2 Delays in processing of plasma/serum samples  

Specific studies assessing the effect of delays in processing of samples on 

quantification of circulating mtDNA levels are lacking. Jung et al. found no 

effect in the concentration of DNA in plasma samples for up to 24 hours (Jung 

and Klotzek, 2003). However, DNA detected in serum samples were 

significantly higher (approximately double) if centrifugation was delayed for two 

hours at room temperature compared to if processing occurred immediately. 

Xue et al. more recently found that if processing was delayed by more than 

two hours post venipuncture, significantly higher levels of DNA were detected 

in plasma (4-25 hours) irrespective of whether samples were kept on ice or at 

room temperature prior to centrifugation (Xue et al., 2009). 

 

Irrespective of sample type, it is likely that extensive delays between 

venipuncture and centrifugation is associated with significant increases in the 

total DNA copy number detected. This effect is presumably due to leukocyte 

lysis and this effect appears to be more pronounced the longer the delay until 

centrifugation.  
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2.4.1.3 Centrifugation protocols for plasma 

The concentration of circulating nucleic acids in plasma varies based on the 

blood processing protocol used. mtDNA copy number after centrifugation at 

1,600g as detected by qPCR was found to be significantly higher compared to 

centrifugation at 1,600g followed by a further 16,000g spin (Chiu et al., 2003). 

MtDNA exists in plasma in both particle and non-particle associated forms 

(Chiu et al., 2003). After separation of plasma from whole blood using a slow 

speed spin, subsequent filtration or a high speed spin is required to remove 

particles, cell fragments and platelets to achieve ‘cell free plasma’ (Chiu et al., 

2001). The centrifugal force required for the high speed spin is unclear but 

common protocols in the literature include 5,000g, 9,600g and 16,000g (Chiu 

et al., 2001)(Zhang et al., 2010). 

 

Of the particles removed in high speed centrifugation, platelet associated 

mtDNA seem particularly important. Lauring et al. attempted to determine 

whether residual platelets in processed samples would lead to spurious 

mtDNA results (Lauring et al., 2012). From stored plasma (previously spun 

twice at 1,000g/10min), platelets were separated with a subsequent 

centrifugation at 3,000g for 5 minutes. Although there was a correlation 

between the mtDNA calculated in each sample (r = 0.46), there was 

significantly less mtDNA detected in the sample with the platelet depleting 

extra centrifugation step.  
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Other groups have also examined the effect of platelets on mtDNA 

quantification but in the context of either whole blood, peripheral blood 

mononuclear cell (PBMC) or buffy coat preparations. Urata et al. measured 

mtDNA before and after platelet depletion in PBMCs, concluding that platelet 

contamination indeed caused large overestimation of mtDNA (Urata et al., 

2008). In the same study, platelet depletion decreased variation of mtDNA 

copy number to about a half indicating that achieving platelet poor preparations 

is important for reproducible measurement. Similarly, other authors have also 

found platelets to be an important source of contamination (Banas, Kost and 

Goebel, 2004).  

 

2.4.1.4 DNA degradation 

There is evidence that DNA degrades over time even with storage at -80oC. 

One study estimated this at 30% per year (Sozzi et al., 2005) – both for plasma 

and extracted DNA samples – although this has not been specifically assessed 

in mtDNA. This impacts on comparison cohorts when using biobanks of patient 

samples that have been collected and processed for other purposes. 

 

2.4.1.5 Quantification method for mtDNA 

Review of the literature revealed significant discrepancies in the primer design 

and qPCR conditions. Work by Dr David Dorward at the MRC Centre of 

Inflammation Research (Edinburgh) in establishing optimised a mtDNA qPCR 

protocol was used as the basis of the qPCR methods in this thesis (Dorward, 

2014).  
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2.4.1.6 Recommendations for mtDNA quantification in DAMP 
research 

MtDNA acts as a DAMP after being liberated from cells during non-apoptotic 

cell death. The aim of quantifying mtDNA in the circulation in inflammatory 

disease is to quantify freely circulating levels at time of sampling. To achieve 

this, a rigorous protocol is necessary.  

 

Based on the literature review, I have formulated the following 

recommendations for any research aiming to quantify mtDNA in the circulation 

in the context of its role as a DAMP: 

• Process samples expediently (within two hours) of venepuncture. 

• Preferentially use plasma over serum due to variability in serum mtDNA; 

quantification and potential leucocyte lysis (which may erroneously 

increase the DAMPs detected); 

• Achieve ‘cell free plasma’ through a two-stage centrifugation process with 

a second, high speed spin to eliminate cellular debris and particulate 

associated mtDNA; 

• Avoid using samples stored for many years, which may suffer from DNA 

degradation. 
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2.4.2 Prospective cohort  
 

2.4.2.1 Decision to recruit prospectively 

The initial plan for this thesis was to perform an analysis of previously 

biobanked serum to test the hypothesis that mtDNA was raised in the 

circulation of patients with IBD. I made initial enquiries as to the availability of 

such IBD ‘biobanked’ samples for this work, which revealed that a large 

number of (mainly) serum samples had been stored over the last decade and 

potentially available for such an analysis.  

 

However, as detailed in the previous section (Section 2.4.1), a literature review 

into this area strongly suggested that precise methodology was critical for 

accurate mtDNA analysis. Unfortunately, most stored patient samples in 

available IBD biobanks had large variations in sampling date, sample type and 

processing with variable documentation available. Furthermore, it became 

apparent that for any potential assessment of mtDNA as a biomarker of IBD 

disease activity or prognosis, a well characterised cohort would be required.  

 

Several challenges were identified in the use of biobanked samples. In brief: 

• Most biobank samples available were of serum, rather than plasma; 

• Most plasma sampled did not undergo a second, high speed centrifugation 

spin (see Section 2.4.1.3);  

• The timing (post-venepuncture) and method of centrifugation varied 

considerably between samples; 
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• There was a variable lack of documentation and paired clinical/ 

biochemical information; 

• Many available samples were collected many years previously (see 

Section 2.4.1.4) 

 

In summary, it appeared from initial investigation that use of biobanked 

samples were inadequate to accurately test the primary hypothesis of this 

thesis. Therefore, a prospective study was designed with consistent and 

validated sampling and processing methodology.  

 

2.4.2.2 Evolution of the prospective cohort 

Initially, patients were recruited from inpatient and outpatient services with a 

range of disease activity levels. However, early data suggested that higher 

mtDNA levels were present in patients with active disease compared to IBD in 

remission. This shifted the focus of the recruitment strategy to patients with 

active disease, to help with assessment of the potential role of mtDNA as a 

novel biomarker. 

 

2.4.2.3 Limitations of the recruited cohort 

Although prospectively recruited patients provided the study with significant 

strengths, including a strictly enforced and consistent protocol and a well 

characterised cohort, there are limitations that must be acknowledged.  
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The patients were recruited from a single-centre (Western General Hospital, 

Edinburgh). Inherent in a single-centre strategy is the potential for recruitment 

bias. After adjustment for sample size, single-centre studies tend to show 

larger treatment effects on survival than do multicenter trials (Dechartres et al., 

2011). This may be particularly relevant with the shift in focus in this study from 

IBD towards ‘active IBD’. Indeed, far more UC patients (and in particular 

ASUC) were recruited compared to CD. This was largely a result of 

accessibility of ward based hospitalised patients for recruitment. Notification of 

potential participants was generally from clinicians and nursing staff on the 

wards, which also contributed to significantly more patients with severe 

disease being recruited than initially anticipated.  

 

However, this bias towards more severely active disease may also have been 

influenced by the overwhelming inflammatory response seen in ASUC (i.e. 

these patients would be the lowest hanging fruits for high mtDNA levels). 

However, given the exploratory nature of this research and funding restrictions, 

this was felt to be an appropriate methodology. It is clear that any findings from 

this exploratory study will require validation in further cohorts.  

 

Although attempts were made to age and sex match controls with IBD patients, 

this was limited by the pool of controls available for recruitment. Despite this 

lack of strict age/sex matching, there was no significant differences between 

the recruited cohorts in terms of demographics. 
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Given the relatively small number of patients recruited, there is potential for 

type II error in some of the subgroup analysis performed. In particular, only 30 

patients were recruited to the CD cohort. This could lead to type II error 

especially with assessing mtDNA as a biomarker with subgroup disease 

activity analysis (Chapter 3).  

 

2.4.3 Reproducibility of the mtDNA assay 
 

There are various statistical methods that can be used to determine a test’s 

test-retest reliability (“reproducibility”). Correlation coefficients can provide an 

indication of relative reliability, and are a reflection of the way in which two sets 

of observations follow a straight line (of best fit). However, the main drawback 

of correlation tests in assessing for repeatability is that it does not provide any 

insight into systematic errors that may be present. In this way, a high level of 

correlation may have a marked divergence from the line of complete 

agreement. Correlation of variation also provides an assessment of relative 

reliability and assesses the extent of variability in relation to the mean. In the 

context of duplicate measurements, it provides an indication of the precision 

or repeatability of a test. 

 

In this study, intra assay coefficient of variation (CV) was 7.7% for mtDNA 

quantification. This intraassay CV compares favourably to some published 

studies for mitochondrial DNA quantification of 11.3% (Gahan et al., 2001) and 

13.0% (Bhat et al., 2004) and unfavourably with other studies of 1% (Gourlain 

et al., 2003) and 3.3% (Xia et al., 2009). The differences in the reported intra 
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assay CV rates could be partly explained by the different blood fractions and 

PCR primers used in the above studies. Collectively, the data suggests good 

reproducibility of qPCR for mitochondrial DNA quantification. 

 

Data for inter assay reproducibility was not available in this study. Reported 

inter assay CV rates in the literature for mitochondrial DNA quantification vary 

between 5.5% and 30% (Gourlain et al., 2003; Kavlik et al., 2011; Bhat et al., 

2004). 

 

There are numerous other statistical methods that may be used to assess 

agreement between two sets of data, including visualisation via a Bland-

Altman plot (Bland and Altman, 1986). A Bland-Altman plot is generally used 

to compare two measurement techniques and plots the absolute difference 

between the different tests on the vertical axis around the mean difference. It 

can help detect systemic bias and provide limits where 95% of the differences 

are expected to lie between limits (if the data points are normally distributed). 

 

2.4.4 Variability in healthy control mtDNA levels 
 

There was a notable variability in the mtDNA levels of healthy controls in this 

study (median 64.6 copies/µL, range 13.7 - 205.2, IQR 51.6 - 104). There are 

a number of possible explanations for this variability. Firstly, variation in 

measurable levels of biomarkers is expected in healthy individuals. For 

example, the 2.5th, 50th and 97.5th percentile values for CRP was found to be 

0.08, 0.64 and 3.11 in healthy donor population with a nongaussian distribution 
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(Macy et al., 1997).  In addition, ageing and exercise may influence circulating 

cell free mtDNA levels. MtDNA levels were found to be higher in levels of older 

(Pinti et al., 2014) and correlated with ‘frailty’ scores (Jylhävä et al., 2013). 

However, another study found no association between plasma mtDNA levels 

and age (Verschoor et al., 2015). Exercise has been associated with lower 

circulating mtDNA levels (Shockett et al., 2016), and lower levels have been 

found in professional sportspeople compared to nonathlete controls (Nasi et 

al., 2015). In addition, other conditions not classically associated with 

inflammation such as depression have been found to have been associated 

with higher mitochondrial DNA levels (Lindqvist et al., 2018) (Kageyama et al., 

2018). There was no association with age or gender and mtDNA in healthy 

controls in this study, although the numbers were small.  

 

Large, population-based studies are required to determine the distribution of 

mitochondrial DNA levels in the healthy population. This will help identify 

‘normal’ ranges and ‘abnormal’ levels as well as determine whether the 

distribution is gaussian. 

 

2.4.5 Correlation between serum and plasma mtDNA 

levels  
 

As discussed earlier (Section 2.4.1.1), the two main blood fractions used for 

circulating mtDNA quantification are plasma and serum. Most studies in 

inflammation research have used plasma, due to the theoretical risk for serum 

of intracellular DAMPs (including mtDNA) being released during clotting. 
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However, only a few studies have examined the correlation between plasma 

and serum in matched samples. In addition, I am not aware of any published 

data comparing matched plasma vs. serum for mtDNA quantification (as 

opposed to nuclear DNA). Given both plasma and serum were collected for 

participants, we performed comparative matched analysis. 

 

We found a modest positive correlation between paired plasma and serum 

samples for mtDNA genes COXIII (r = 0.46) and ND2 (r = 0.52). These findings 

are in keeping with the existing literature for quantification of nuclear DNA 

(Boddy et al., 2005; Umetani, Hiramatsu and Hoon, 2006; Zanetti-Dallenbach 

et al., 2008). Umateni et al. found a positive correlation between qPCR 

detected DNA in serum and plasma (n=24, r=0.72, p=0.0002) (Umetani, 

Hiramatsu and Hoon, 2006). Zanetti-Dallenbach et al. found a positive 

correlation (n=107, r=0.54, p=0.01) for DNA in serum and plasma in healthy 

control, and benign and malignant breast cancer participants. Boddy et al. 

found a positive correlation for DNA between two-spin plasma and serum 

samples in patients with malignant and benign prostatic disease (n=40, r = 

0.56, p < 0.001). 

 

The stronger correlation seen in Umetani et al. compared to results in this 

study could be due to various factors. Firstly, the number of paired samples 

assessed was larger in our sample (n=114). Secondly, processing protocols 

differed significantly with our protocol (and with those of the other two studies 

mentioned above) with no second high speed spin being performed for plasma 
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samples; instead, a 13mm filter for both serum and plasma was used. Thirdly, 

our data reflected mtDNA gene amplification whereas Umetani et al. amplified 

nuclear DNA using a primer set designed to produce an amplicon size of 

115bp.  

 

This is the largest correlative comparison (n=114) that I am aware of 

comparing DNA as quantified by qPCR in cell-free plasma vs. serum. 

Furthermore, this is the first comparative analysis of mtDNA as quantified by 

qPCR in cell-free plasma vs. serum. 

 

2.4.6 Mitochondrial DAMPs are elevated in IBD 
 

2.4.6.1 Major findings 

Recently, mtDNA as detected by qPCR was recently reported by our group to 

be higher in the plasma of mice with chemical induced colitis compared to 

those without colitis (Ho et al., 2018). In this thesis, I present data to show for 

the first time that significantly increased levels of mtDNA are found in active 

human IBD. This applies to both UC and CD when compared to non-IBD 

controls. 

 

I corroborated these findings with a second known mitochondrial DAMP, by 

demonstrating the presence of N-formylated peptides arising from the 

mitochondria in the plasma of patients with active UC. Of the mitochondrial N-

formylated peptides detected, fMMYALF was the most abundant. This is highly 
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relevant as fMMYALF is the most biological active mitochondrial N-formylated 

peptide (Rabiet, Huet and Boulay, 2005).  

 

2.4.6.2 Practical considerations 

The supportive N-formylated peptide data was exploratory in nature and 

performed in only a small subset of patients (n=5 ASUC and n=5 HC). Funding 

and time restrictions prevented further investigation of the role of N-formylated 

peptides in IBD. However, given the biological associations between N-

formylated peptides and mtDNA, this data provides valuable support to the 

hypothesis that mitochondrial DAMPs are released during inflammation in IBD. 

In the future, we seek to perform similar measurements in a larger cohort of 

IBD patients including CD and mild-moderate UC.  

 

An additional limitation to our data is that we have not studied mtDNA in non-

IBD intestinal inflammatory conditions such as infectious colitis or diverticulitis. 

It is conceivable that high mtDNA release is also present in these conditions, 

and further investigation is warranted.  

 

2.4.6.3 MtDNA levels in inflammatory disease 

Circulating mtDNA levels have been found to be elevated in several other 

inflammatory conditions (summarised in Section 1.3.5). Here, I put the findings 

of raised circulating mtDNA levels in IBD into the wider context of inflammatory 

disease.  
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Systemic inflammatory response syndrome (SIRS) 

SIRS is a serious condition associated with high mortality where affected 

individuals display progressive signs or symptoms of systemic upset reflecting 

widespread inflammation, often involving multiple organ dysfunction and 

failure (e.g. lungs, kidneys, brain). SIRS is often a result of major sepsis but 

also commonly occurs in the context of injury such as trauma. An early study 

by Lam et al. found that individuals admitted for blunt traumatic injury had 

increased plasma nuclear DNA and mtDNA levels (Lam et al., 2004). 

Subsequently, Hauser and colleagues made the seminal observation that it is 

the freely circulating mtDNA following traumatic injury which possess the 

distinct ability to trigger and drive the clinical manifestation of SIRS (Zhang et 

al., 2010). Several studies have now confirmed the observation of elevated 

plasma mtDNA in trauma and SIRS (Nicole Y.L. Lam, Timothy H. Rainer, 

Rossa W.K. Chiu and Lo, 2004; Hauser et al., 2010; Zhang, Itagaki and 

Hauser, 2010; Gu et al., 2013; Hsu et al., 2013; Simmons et al., 2013; 

Prikhodko et al., 2015; Timmermans et al., 2016).  

 

In sepsis, elevated levels of circulating mtDNA have also been found in 

multiple studies (Lu et al., 2010; Garrabou et al., 2012; Kung et al., 2012; Hsu 

et al., 2013; Bhagirath, Dwivedi and Liaw, 2015; Di Caro et al., 2015; 

Timmermans et al., 2015). The one negative study in sepsis may be explained 

by numerous factors including a relatively well patient cohort, only one ‘spot’ 

measurement being taken at presentation and the potentially confounding 

factor of cellular content/debris (Puskarich et al., 2012). 
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Acute single organ injury: Liver, heart and brain 

High levels of mtDNA are present in the serum and plasma of patients with 

acute injury to a variety of single organs. Acetaminophen overdose induces 

massive hepatocyte necrosis and in severe cases can lead to multi-organ 

failure and remains one of the commonest indications for liver transplantation. 

Drug induced acute liver failure patients had serum mtDNA levels of up to 

10,000 fold higher (Marques et al., 2012) than healthy controls. Serum mtDNA 

of acetaminophen overdose patients with derangement in the liver enzyme 

alanine aminotransferase (a marker of hepatocyte damage) is significantly 

higher than overdose patients who had normal liver enzymes (McGill et al., 

2012), suggesting the extent of mtDNA release into the circulation depends on 

the extent of hepatocyte necrosis.  

 

Similarly, extensive cardiomyocyte necrosis is found in acute myocardial 

infarction which is also associated with elevated mtDNA in multiple studies 

(Bliksøen et al., 2012; L. L. L. Wang et al., 2015; Qin et al., 2016) and fall after 

angioplasty or coronary stent insertion to restore blood flow to the damaged 

myocardium (Bliksøen et al., 2012; L. L. L. Wang et al., 2015). Patients with 

diabetes mellitus and coronary artery disease have higher mtDNA levels than 

those with diabetes but without coronary artery disease (J. Liu et al., 2015). 

MtDNA is also higher in acute cerebral ischaemia, caused by a reduction in 

cerebral blood flow by embolus or local thrombosis, and plasma levels 

gradually drop over time after the initial tissue injury (Lakra et al., 2011). 

Interestingly, studies by the same group relating to plasma mtDNA in 
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subarachnoid haemorrhage and spontaneous intracerebral haemorrhage 

found no significant difference compared to healthy controls, although both 

were small studies (Wang et al., 2012, 2013).  

 

Overall in these conditions, significant mtDNA release following massive tissue 

or cellular injury is evident and likely contributes to the uncontrolled 

inflammatory response.  

 

Chronic inflammatory and immune-mediated diseases 

Distinct to conditions relating to injury, the role for mtDNA in immune-mediated 

inflammatory diseases is now also emerging. In rheumatoid arthritis, a chronic 

relapsing autoimmune condition affecting the joints, mtDNA was present in the 

plasma and synovial fluid of most patients but undetectable in healthy controls 

(Hajizadeh et al., 2003). Similarly, higher plasma mtDNA is found in 

granulomatosis with polyangiitis, an autoimmune disease whose features 

include necrotizing granulomatous inflammation and vasculitis (Surmiak et al., 

2015).  

 

Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disease in 

which hallmarks include excessive type I interferon (IFN) and antibodies 

against nucleic acids. Caielli et al. explored the potential pathogenic 

importance of oxidised mtDNA in SLE. They showed that there is a defect in 

mitochondrial clearance which leads to abnormal extrusion of oxidised mtDNA 

which triggers subsequent interferogenic response (Caielli et al., 2016).  
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Higher levels of mtDNA have been found in the chronic inflammatory states of 

HIV (although not in all studies), end-stage renal failure and diabetes mellitus 

(Table 1.8). In obese individuals with steatohepatitis, mitochondria enclosed in 

microparticles can also be detected in plasma (Garcia-Martinez et al., 2016). 

These findings suggest that mtDNA, otherwise a ‘self-signal’, may be an active 

component in the aberrant immune or inflammatory response in chronic 

diseases and in autoimmunity. 

 

2.4.6.4 Other DAMPs raised in IBD 

In IBD, the chronic non-resolving and extensively inflamed gut mucosa 

represents an enriched source of local and systemic DAMPs (Figure 2.8). 

Unsurprisingly, several other DAMPs are found in abundance during active 

disease in IBD including the S100A calgranulins (S100A8/9 complex or 

calgranulin A/B or MRP8/14 or calprotectin; and S100A12), HMGB1 and 

interleukin-1α/33 (IL-1α and IL-33). The latter group DAMPs are regarded as 

‘alarmins’ (Garlanda, Dinarello and Mantovani, 2013), molecules that possess 

cytokine-like functions which are stored in cells and released upon 

uncontrolled cell death.  
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Figure 2.11: Contribution of DAMPs to inflammatory response in IBD. In 

health, intestinal epithelial cells undergo constant shedding and apoptosis. 

Tissue damage releases danger signals which initiates a protective 

inflammatory response to restore tissue homeostasis. In IBD, non-apoptotic 

cell death, mucosal oxidative stress and deregulation of homeostatic pathways 

lead to overwhelming release of DAMPs creating a pro-inflammatory milieu. 

These DAMPs lead to an inflammatory response through a variety of pathways 

leading to further tissue damage and ongoing intestinal epithelial cell death. 

(Boyapati, Rossi, et al., 2016) 
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A comprehensive list of DAMPs implicated in IBD and experimental colitis is 

provided in Table 2.3 although it is noteworthy that many DAMPs have yet to 

be studied in the context of intestinal inflammation (for references, please see 

(Boyapati, Rossi, et al., 2016)).  

 

DAMP/Alarmin Main source 

S100A8/S100A9 Neutrophils, monocytes, epithelium 

S100A12 Neutrophils 

HMGB1 Predominantly macrophages and monocytes but 
also NK cells, DC, neutrophils, eosinophils and 
platelets 

IL-1α Neutrophils, macrophages, IECs  

IL-33 Initially via stressed IECs and later via lamina 
propria cells  

Lactoferrin Neutrophils, brush border cells, macrophages, 
monocytes, lymphocytes 

Heat shock proteins 
(HSPs) ** 

Wide variety of cell types 

Tenascin-C  Wide variety of cell types 

Hyaluronan Wide variety of cell types 

Galectins Wide variety of cell types 

ATP Wide variety of cell types 

** It is controversial as to whether heat shock proteins are DAMPs 

Table 2.3: DAMPs implicated in IBD and experimental models of colitis 

(Boyapati, Rossi, et al., 2016) 
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The findings of this chapter support the idea that in addition to the DAMPs 

discussed above, mitochondrial DAMPs are also released into the circulation 

in IBD. The likely source of mitochondrial DAMPs in IBD is the inflamed gut 

mucosa where cellular stress and death occur. However, the mechanisms 

relating to DAMP release in IBD are complex and warrant further discussion. 

The next section deals with the mechanisms regulating DAMP activity and 

clearance that are relevant to IBD.  

 

2.4.7 Implications of findings 
 

In this chapter, I have provided the first evidence to show that mitochondrial 

DAMPs (in particular mtDNA) is released into the circulation in active IBD and 

that higher levels are associated with more severe disease. I hypothesise that 

mtDNA is an important pathogenic trigger that maintains the state of abnormal 

mucosal inflammation. IBD-specific factors which support this hypothesis 

related to DAMP activity and release are discussed below.  

 

2.4.7.1 The manner of cell death affects DAMP release 

Current evidence suggests the load and composition of DAMPs may 

determine whether their effects become pathogenic, hence re-emphasizing the 

delicate balance between the protective and pathologic roles of DAMPs. Here, 

I review the factors that may influence this balance in the context of IBD. 
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In health, the intestinal epithelium is replaced every 5-7 days; epithelial cells 

are either shed or die by apoptosis. In active IBD, non-apoptotic cell death (e.g. 

epithelial necrosis) occurs more commonly (Gunther et al., 2012).  More 

recently, necroptosis or programmed necrosis is increasingly appreciated as 

an alternative mechanism (Kaczmarek, Vandenabeele and Krysko, 2013) 

which appears to contribute to intestinal inflammation similar to that found in 

IBD (Günther et al., 2011; Welz et al., 2011).  

 

Of interest, relevant KO mouse models and some limited evidence in human 

studies suggest a role for necroptosis in IBD although it remains possible that 

these clinical phenotypes are primarily driven by loss of barrier and specialised 

enterocyte function (Paneth cells in this case) rather than mucosal DAMP 

release  (Boyapati, Rossi, et al., 2016). Necroptosis lacks the massive caspase 

activation seen in apoptosis and this leads to comparative DAMP activation. 

For example, the lack of caspase-activated deoxyribonuclease (DNase) 

means DNA is not cleaved, leading to higher molecular weight DNA with 

greater proinflammatory potential (Martin, Henry and Cullen, 2012).  

 

Similarly, full length IL-33 is released in necroptosis compared to the non-

immunological IL-33 in apoptosis which is due to caspase-dependent 

proteolysis (Lüthi et al., 2009). HMGB1 is oxidised into its non-immunological 

form during apoptosis by caspase mediated reactive oxygen species (ROS) 

with irreversible binding to chromatin, but this does not occur in necroptosis 

(Taylor, Cullen and Martin, 2008). The DAMP-necroptosis link has been 
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illustrated in several experimental models of necroptosis in skin, brain and 

systemic inflammation, which have shown higher levels of various DAMPs 

such as S100A9, IL-33, mtDNA and HMGB1 (Kaczmarek, Vandenabeele and 

Krysko, 2013).  

 

2.4.7.2 The influence of the mucosal milieu on the 
inflammatory pathogenicity of DAMPs 

Increased mucosal oxidative stress is another key feature of active IBD, which 

can enhance the pro-inflammatory effects of DAMPs. An oxidative milieu 

modifies various proteins and lipids such as cholesteryl ester hydroperoxides 

and oxidised phospholipids, activating their role as potent DAMPs causing 

further inflammation (Imai et al., 2008; Choi et al., 2009). Oxidised mtDNA also 

becomes significantly more inflammatogenic. Shimada et al. found that 

cytosolic oxidised mtDNA rather than its non-oxidised form, directly activates 

the NLRP3 inflammasome and IL-1β production (Shimada et al., 2012). 

Pazmandi et al. further showed the increased immunogenicity of oxidatively 

modified mtDNA on plasmacytoid dendritic cells compared to native mtDNA 

(Pazmandi et al., 2014).  

 

2.4.7.3 De-regulation of mucosal homeostatic pathways 
‘prime’ the inflammatory potential of DAMPs 

Defective autophagy and the unfolded protein response (UPR) regulating ER 

stress are important in the pathogenesis of IBD (Kaser et al., 2008). A meta-

analysis of GWAS has identified the autophagy genes ATG16L1 and IRGM as 

key susceptibility genes particularly in CD (Jostins et al., 2012). ER stress 
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related genes have been implicated in IBD by GWAS (ORMDL3) and 

candidate gene approaches (XBP1 and AGR2) (Zheng et al., 2006; Kaser et 

al., 2008). The importance of autophagy in endogenous DAMP-mediated 

inflammation is increasingly appreciated although its role in the clearance of 

intracellular pathogens (“xenophagy”) is established. 

 

From a DAMP perspective, failure to clear proinflammatory damaged 

mitochondria is a key consequence of defective autophagy and may contribute 

to enrichment of cells with DAMPs, priming them to be released into the 

circulation. Dysfunctional, ROS-generating mitochondria (Zhou et al., 2011) 

and specifically oxidised mtDNA (Shimada et al., 2012) can activate the 

NLRP3 inflammasome. Other DAMPs such as ECM components biglycan and 

hyaluronic acid can additionally prime inflammasome activation in this context 

(Iyer et al., 2009).  Nakahira et al. showed that defective autophagy promotes 

the accumulation of mitochondrial DAMPs and NLRP3 inflammasome 

activation (Nakahira et al., 2011). Indeed, in ATG16L1-deficiency there is an 

increased susceptibility to inflammasome mediated release of IL-1β and IL-18 

(Saitoh et al., 2008).   

 

A further study showed that defective autophagy can lead to the release of 

DAMPs and subsequently contribute directly to inflammatory pathology in vivo 

(Oka et al., 2012). Here, Oka et al. showed that mice deficient in DNase leaked 

mtDNA and developed a TLR9 mediated proinflammatory state, 

cardiomyopathy and heart failure (Oka et al., 2012). These studies point to a 
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failure in autophagy resulting in a higher load of inflammatory intracellular 

DAMPs. It is noteworthy that in vivo mouse models of ATG16L1 deficiency 

(chimeric, hypomorphic, human IBD ATG16L1 polymorphism T300A knock-in 

and epithelial specific ATG16L1-deficiency) do not develop spontaneous colitis 

but are very susceptible to gut inflammation when subjected additional 

injurious stimuli (dextran sulfate sodium [DSS], murine norovirus or genetic 

deficiency of ER-stress) (Boyapati, Rossi, et al., 2016) . Hence, a postulated 

potentiating rather than initiating role in gut inflammation.  

 

2.4.5.4  Summary 

In the setting of overwhelming DAMP release in IBD, the inflammatory milieu 

may tip the balance from a protective to pathological inflammatory state. 

Furthermore, the local mucosal inflammatory state may help prime DAMPs 

such as mtDNA to become more inflammatogenic.  

 

It is important to emphasise that the observation of elevated circulating mtDNA 

levels in patients with IBD does not in itself imply any mechanistic effects of 

mtDNA in IBD. Raised mitochondrial DAMPs may be a hallmark of 

inflammation associated with IBD or alternatively, it may be an important factor 

in perpetuating inflammation in IBD. The IBD-related factors associated with 

the higher potential inflammatory effect of DAMPs (as discussed above) 

supports mtDNA as an active player, but substantial further investigation 

(discussed in Chapter 5).  
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Many inflammatory conditions are associated with raised levels of mtDNA, 

suggesting that release is unlikely to be disease-specific. However, this lack of 

disease-specificity does not preclude a potentially important role for mtDNA in 

propagating inflammation associated with IBD. Separate from the mechanistic 

discussion is the potential role of mtDNA as a biomarker. It is notable that the 

main clinically useful biomarkers in IBD (faecal calprotectin, CRP and albumin) 

are not specific for IBD-related inflammation. The next chapter deals with the 

potential role of mtDNA as a novel biomarker in IBD. 
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3.1 Introduction 
 

Biomarkers (‘biological markers’) are substances, structures or processes that 

are able to be measured objectively, accurately and reproducibly influencing 

or predicting the incidence of outcomes or diseases (Strimbu and Tavel, 2010). 

Biomarkers have a particularly important role in IBD, where disease 

heterogeneity and complexity renders clinical markers limited in the ability to 

predict intestinal inflammation and long-term outcomes (Lichtenstein and 

McGovern, 2016). 

 

IBD clinicians currently rely on a few clinically useful biomarkers including 

ESR, CRP, albumin and faecal calprotectin (Section 1.1.4). However, definitive 

assessment of mucosal healing (the best predictor of long-term outcome) 

generally requires invasive and expensive investigations (including 

endoscopy, radiology and histology) to classify, assess disease activity, 

monitor response to therapy and provide prognostic information.  

 

Currently available IBD biomarkers suffer from many limitations. Blood-based 

biomarkers such as ESR, CRP and albumin are acute phase reactants which 

are raised in many inflammatory states; in contrast, faecal calprotectin is not 

affected by extra-intestinal inflammation and thus is more specific (Gisbert and 

McNicholl, 2009). However, faecal calprotectin is reflective of gut inflammation, 

is not disease-specific and is raised in several non-IBD gut inflammatory states 

such as nonsteroidal anti-inflammatory drug (NSAID) enteropathy and 

infectious gastroenteritis. Furthermore, there are issues with faecal 
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calprotectin around sampling difficulty and high intraday variability in some 

patients (Lasson et al., 2015). Therefore, there is a clear need for novel non-

invasive biomarkers in IBD to help in clinical decision making.  

 

Beyond this, IBD clinicians yearn for a time when biomarkers will allow for 

treatment decisions in a ‘personalised’ or ‘precision’ medicine approach 

(Boyapati, Kalla, et al., 2016). This will involve large scale prospective cohorts 

and patient inputted data leveraging big-data driven approaches. However, 

discovery-based approaches are currently burdened by significant challenges, 

and hypothesis/biology-based biomarkers have had the most success so far 

in IBD. Thus, there remains an important role in biomarker discovery for 

organic scientific thinking.  

 

After establishing that mtDNA was elevated in patients with IBD, we wanted to 

assess its potential as a biomarker. Specifically, we aimed to assess the value 

of mtDNA in an exploratory cohort with regards to disease activity and 

prognosis. 
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3.2 Methods 
 

3.2.1 Prospective study & mtDNA quantification 
 

Methods are as described in Chapter 2 (Section 2.2) for the prospective study 

and mtDNA quantification. 

 

3.2.2 Endoscopic disease activity stratification 
 

Endoscopic disease severity was obtained from endoscopic reports generated 

by the gastroenterologist in charge of patients at time of sample collection. 

Endoscopy assessment was considered appropriate for inclusion if it was 

performed within 72 hours of a sample. 

 

Only patients with UC were considered for inclusion in this analysis. CD can 

affect any part of the gastrointestinal tract from mouth to anus, which means 

that areas of inflammation may not be reachable via colonoscope (e.g. in the 

proximal small bowel). Furthermore, a normal colonoscopy does not 

necessary imply the absence of gut inflammation in CD. In contrast, UC affects 

the colon in a distal-to-proximal distribution, leading to a more robust 

understanding of the current level of gut inflammation from colonoscopy.  

 

Disease activity was classified as ‘mild’, ‘moderate’ and ‘severe’ disease as 

per the endoscopic reports. In UC, ‘mild’, ‘moderate’ and ‘severe’ relate to the 

most widely used endoscopic scoring system in clinical practice (Mayo score, 
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Appendix F). Representative pictures of mild, moderate and severe 

endoscopic appearance are presented in Section 1.1.3.5 (Figure 1.2). If 

categorisation was unclear from the endoscopy report, the gastroenterologist 

who performed the procedure was consulted. 

 

3.2.3 Colectomy data 
 

Patients with ASUC were followed to determine whether they had undergone 

colectomy. If it was unclear from clinical notes whether a patient had 

undergone colectomy by the end of the study period, attempts were made to 

contact the patient for this information. 

 

For patients who underwent colectomy, attempts were made to repeat 

sampling to compare pre- and post-colectomy mtDNA levels. If multiple 

samples were taken during admission for these patients, the first sample was 

considered as the ‘pre-colectomy’ sample. Patients who were unable or 

declined to be resampled were considered lost to follow-up. 

 

3.2.4 Serum Calprotectin 
 

ELISA for quantification of calprotectin in the serum was performed by Dr 

Rahul Kalla using a protocol as previously outlined (Kalla et al., 2016). The 

methods are reproduced here with permission. 
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Samples were analysed in duplicate using the Calpro AS™ calprotectin ELISA. 

Prior to each 96 well run, 100µL of serum was first diluted (1:5) using a dilution 

buffer. 100µL of the diluted sample was then transferred onto 96 well plate 

coated with 3% bovine serum albumin (BSA).  

 

A total of 100µL of standards, positive and negative controls and samples were 

plated in duplicates and all plates contained wells with blanks (no template 

control).  This layout was then transferred onto the ELISA plate using a 

repetitive multichannel pipette and incubated for 45 minutes on a horizontal 

plate shaker. At the end of incubation, the liquid was discarded and 3 wash 

cycles (300µL per well) were performed using an automated plate washer. 

100µL of enzyme conjugate was then added to each well using a multichannel 

pipette and the samples were incubated for 45 minutes on a horizontal plate 

shaker. A further 3-cycle wash step was performed followed by an enzyme 

substrate step (100µL per well) and incubation at room temperature for 30 

minutes, protected from light. After incubation, 1M NaOH was added to 

standardise the incubation period and the plate was read at an optical density 

(OD) 405nm using an ELISA reader.  

 

A 4-parameter standard curve was generated for each run and all standards 

and control OD were matched to the manufacturer recommended range. Any 

plate with standards and/or controls that were out of range were repeated. 

Samples with a calprotectin result of >2500 ng/mL were diluted and retested. 

Coefficients of variation of <10% were included in the analysis. 
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3.3 Results 
 

3.3.1 Steroid use during ASUC 
 

All patients with ASUC were on intravenous steroids at some point during their 

admission. There were 81 samples taken from patients with ASUC in the study. 

3 samples were taken from patients who had been changed to oral 

prednisolone (all 40mg daily) at the time of sampling. Table 3.1 lists the 

number of samples taken categorised by the number of doses of intravenous 

steroid they had received prior to sampling. Patients with ASUC received twice 

daily dosing of 30mg of intravenous methylprednisolone. 

Doses of IV 
steroids received 
prior to sampling 

Number of 
samples 

0 7 

1 5 

2 10 

3 3 

4 8 

5 4 

6 6 

7 4 

8 6 

9 3 

10 19 

11 3 

Table 3.1: Number of samples from patients with ASUC categorised into the 

number of doses of intravenous steroids prior to the sample being taken  
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3.3.2 mtDNA over the course of 5 days in ASUC 
 

I sought to investigate the change in mtDNA level over the course of an 

admission for ASUC. I identified five patients with ASUC for mtDNA 

measurement over five consecutive days post admission. Daily mtDNA, CRP 

and albumin levels for each patient (1-5) is presented below. 

 

 

Figure 3.1: Patient 1 mtDNA, CRP and albumin over 5 days patient admission 

with ASUC. 39-year-old female who made initial good clinical response to IV 

steroids but required colectomy on day 7. 
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Figure 3.2: Patient 2 mtDNA, CRP and albumin over 5 days patient admission 

with ASUC. 29-year-old male, responded to IV steroids. 

 

 

Figure 3.3: Patient 3 mtDNA, CRP and albumin over 5 days patient admission 

with ASUC. 29-year-old male, responded to IV steroids initially but required 

colectomy day 70 after subsequent relapse. 
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Figure 3.4: Patient 4 mtDNA, CRP and albumin over 5 days patient admission 

with ASUC. 35-year-old female, responded to IV steroids. 

 

 

Figure 3.5: Patient 5 mtDNA, CRP and albumin over 5 days patient admission 

with ASUC. 81-year-old female, CRP peak 59, responded to IV steroids 
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3.3.3 MtDNA as a marker of disease activity 
 

3.3.3.1 MtDNA levels stratified by clinical activity 

Ulcerative colitis 

In UC, patients were stratified using the SCCAI (Appendix A) as being in 

‘clinical remission’ or with active disease and the latter group further classified 

into ‘mild-moderate’ or ‘severe’ activity based on whether they met Truelove 

and Witts’ criteria for severe disease (Appendix A). 

 

Those in with severe disease had significantly higher circulating plasma 

mtDNA levels (234.7 copies/µL [115.3 – 723.4]) compared to those in clinical 

remission (53.77 copies/µL [IQR 30.56 – 86.8]; p<0.0001) and mild-moderate 

disease (98.52 copies/µL [IQR 62.23 – 205.2]; p=0.002) (Figure 3.6). 

 

Patients with clinically mild-moderate disease had significantly higher 

circulating plasma mtDNA levels compared to those in clinical remission (98.52 

copies/µL [IQR 62.23 – 205.2] vs. 53.77 copies/µL [IQR 30.56 – 86.8]; 

p=0.002). 
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Figure 3.6: Plasma mtDNA (copies/µL) in UC in clinical remission, active and 

severe active (n= 13, 18 and 44 samples respectively; 8 UC individuals had 

samples taken more than 1 time point during active disease and in remission). 

Median ± IQR. 
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Crohn’s disease 

In the smaller cohort of CD, patients were stratified using the HBI (Appendix 

A) as being in ‘clinical remission’ or ‘active’ and the latter group further 

classified into severely active if they required hospitalisation and intravenous 

steroids. 

 

Higher mtDNA levels were observed in those with severely active CD (159.1 

copies/µL [IQR 90.17-421]) compared to those in remission (79.92 copies/µL 

[IQR 30.94 – 145.9] (p=0.04) (Figure 3.7).  

 

There was no difference in circulating mtDNA between those categorised as 

mild-moderately active CD compared to those in clinical remission (179.9 

copies/µL [IQR 110.8 – 551.1] vs. 79.92 copies/µL [IQR 30.94 – 145.9]; 

p=0.06). There was no difference in circulating mtDNA between those 

categorised as severely active compared to the mild-moderately active group 

(159.1 copies/µL [IQR 90.17-421] vs. 179.9 copies/µL [IQR 110.8 – 551.1] 

(p=0.72) (Figure 3.7).  
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Figure 3.7: Plasma mtDNA (copies/µL) in CD, clinical remission, active and 

severe disease (n= 10, 5 and 16 samples respectively. One CD individual had 

samples taken more than 1 time point during active disease and in remission). 

Median ± IQR.  
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3.3.3.2 MtDNA levels stratified by endoscopic activity 

A total of 68 samples had endoscopy reports suitable for inclusion in this 

analysis. Patients with endoscopically moderate (199.5 copies/µL [IQR 109 – 

427.4]) and severe disease (255.4 copies/µL [96.71 – 641.4]) had significantly 

higher circulating mtDNA plasma levels in comparison to those with 

endoscopically mild disease (33.11 copies/µL [IQR 28.71 – 44.9] (p<0.0001 

and p=0.0002 respectively) (Figure 3.8). Patients with moderate and severe 

disease on endoscopy did not have different levels of mtDNA detected in their 

plasma.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Circulating plasma mtDNA by endoscopic appearances in UC 

(mild, moderate, severe; n= 4, 41 and 23 samples respectively). Median ± IQR. 
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3.3.4 Correlation with existing biomarkers in IBD 
 

3.3.4.1 CRP 

For our IBD cohort samples, mtDNA levels was positively correlated with CRP 

when mtDNA was quantified using COXIII (r=0.35, p<0.0001; Figure 3.9) and 

ND2 genes (r=0.28, p=0.0003) (Figure 3.10) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Spearman correlation between paired mtDNA plasma (copy/µL) 

as quantified by COXIII gene primers and CRP.  
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Figure 3.10: Spearman correlation between paired mtDNA plasma (copy/µL) 

as quantified by ND2 gene primers and CRP. 

 

 

3.3.4.2 Albumin 

For our IBD cohort samples, mtDNA levels was negatively correlated with 

albumin when mtDNA was quantified using COXIII (r=-0. 38, p<0.0001) 

(Figure 3.11) and ND2 genes (r=-0. 26, p=0.0009) (Figure 3.12). 
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Figure 3.11: Spearman correlation between paired mtDNA plasma (copy/µL) 

as quantified by COXIII gene primers and albumin.  

 

 

Figure 3.12: Spearman correlation between paired mtDNA plasma (copy/µL) 

as quantified by ND2 gene primers and albumin.  
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3.3.4.3 White cell count 

For our IBD cohort samples, mtDNA levels was positively correlated with CRP 

when mtDNA was quantified using COXIII (r=0.36, p<0.0001; Figure 3.13) and 

ND2 genes (r=0.39, p<0.0001) (Figure 3.14). 

 

 

Figure 3.13: Spearman correlation between paired mtDNA plasma (copy/µL) 

as quantified by COXIII gene primers and WCC.  
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Figure 3.14: Spearman correlation between paired mtDNA plasma (copy/µL) 

as quantified by ND2 gene primers and WCC.  

 

 

3.3.4.4 Serum calprotectin 

Serum calprotectin data was available for 29 ASUC plasma samples and 14 

serum samples paired with mtDNA data. 

 

There was no significant correlation between plasma mtDNA levels and serum 

calprotectin when mtDNA was quantified using COXIII (r=0.22, p=0.24; Figure 

3.15) or ND2 genes (r=0.35, p=0.06) (Figure 3.16). 
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Figure 3.15: Spearman correlation between paired mtDNA plasma (copy/µL) 

as quantified by COXIII gene primers and serum calprotectin.  

 

 

Figure 3.16: Spearman correlation between paired mtDNA plasma (copy/µL) 

as quantified by ND2 gene primers and serum calprotectin. 
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There was a significant positive correlation between serum mtDNA levels and 

serum calprotectin when mtDNA was quantified using COXIII (r=0.55, p=0.04; 

Figure 3.17) and ND2 genes (r=0.60, p=0.02) (Figure 3.18). 

 

Figure 3.17: Spearman correlation between paired mtDNA serum (copy/µL) 

as quantified by COXIII gene primers and serum calprotectin.  

 

Figure 3.18: Spearman correlation between paired mtDNA serum (copy/µL) 

as quantified by ND2 gene primers and serum calprotectin. 
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3.3.5 mtDNA as a prognostic biomarker 
 
 

The CD cohort had only one individual who underwent surgery during 

recruitment and follow up, precluding any further analysis. Of the 40 patients 

with ASUC, 12 (30%) underwent colectomy during follow-up after admission 

for ASUC. Follow up was for a median of 269 days (IQR 10-399). 

 

mtDNA levels on admission for patients with ASUC who went on to require 

subsequent emergency colectomy were higher than those who responded to 

medical therapy (colectomy: 302.5 copies/µL [IQR 139 – 1553] vs no 

colectomy group 165 copies/µL [66.75 – 253]; p=0.04) (Figure 3.19).  

 

 

Figure 3.19: Plasma mtDNA (copy/µL) on initial sample for patients with ASUC 

who required colectomy (n=12) vs. no colectomy (n=28). Median ± IQR. 
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Comparative ROC curve analysis of mtDNA, CRP and albumin demonstrated 

AUROCs of 0.71, 0.76 and 0.82 in predicting colectomy (p=0.04, 0.01 and 

0.002) respectively (Figure 3.20). There were no significant differences 

between AUROCs of mtDNA, CRP and albumin to predict colectomy. 

A 
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Figure 3.20: ROC curve analysis of (A) mtDNA, (B) CRP and (C) albumin in 

acute severe UC in-patients and colectomy. 
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To investigate the discriminant ability of mtDNA to predict subsequent 

colectomy, the cut off of maximum likelihood ratio was calculated from ROC 

curve data (1,545 copies/µL, likelihood ratio 7.0) and used to generate Kaplan-

Meier survival curves with censored data for subsequent colectomy during 

follow up (Figure 3.21). There was a significant separation between the two 

survival curves (p=0.006). 

 

 

Figure 3.21: Kaplan-Meier survival curves for ASUC patients (mtDNA >1,545 

vs. ≤ 1,545 copies/µL; log-rank Mantel-Cox; p = 0.006; ROC curve analysis of 

maximum likelihood ratio 7.0; n=40 (12 colectomy, 28 no colectomy)). 
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3.3.6 Characteristics of the ‘high mtDNA’ group 
 

We identified a group of individuals with very high mtDNA levels (n=18, >600 

copies/µL) and investigated if there were unique phenotypic characteristics 

that defined the group.  

 

Multivariate analysis showed that CRP was independently associated with 

very high mtDNA levels (p=0.007, Table 3.2).  

 

 p-value 95% confidence interval 

Hb 0.621 0.973-1.046 

WCC 0.083 0.984-1.310 

Platelets 0.343 0.998-1.007 

CRP 0.007* 1.084-1.672 

Albumin 0.861 0.360-2.346 

Age 0.630 0.974-1.045 

Smoking status 0.918 0.123-10.311 

Sex 0.645 0.416-4.126 

 

Table 3.2: Multivariate logistic regression to analyse parameters associated 

with high mtDNA levels in 160 samples with complete paired data with mtDNA 

levels (mtDNA >600 vs. ≤ 600 copies/µL).  
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3.3.7 Pre- and post-colectomy paired mtDNA levels 
 

12 out of 40 patients (30%) with ASUC in the study underwent colectomy. Of 

these 12 patients, post-colectomy plasma samples were obtained from 8 

patients (4 lost to follow up). This enabled pre- and post-colectomy matched 

mtDNA levels to be compared in these patients. 

 

In a longitudinal series of acute severe UC with paired samples pre- and post-

colectomy (median Δ107 days, IQR 89-189), plasma mtDNA fell following 

colectomy (n=8, p=0.008) (Figure 3.22).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22: Longitudinal analysis of plasma mtDNA(copy/µL) in ASUC (n=8 

patients) during active disease and the same patient post colectomy in clinical 

remission. All data represent median ± IQR. 
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3.3.8 Summary of results 
 

• Higher circulating plasma mtDNA is associated with more severe 

disease in IBD as assessed by clinical indices. For ASUC, higher 

mtDNA levels are also associated with endoscopic severity.   

 

• mtDNA is positively correlated with known markers of disease severity 

including CRP, albumin and WCC. There was a significant correlation 

found between serum calprotectin and serum mtDNA but not with 

plasma mtDNA. 

 

• Patients with ASUC who did not respond to medical therapy and 

required colectomy had higher circulating mtDNA levels compared to 

those who responded to medical therapy. mtDNA performed similarly to 

CRP and albumin in predicting colectomy.  

 

• Multivariate analysis showed CRP to be independently associated with 

high mtDNA levels. 

 

• Sequential mtDNA samples on consecutive days during admission for 

ASUC demonstrated inter-day variability. 

 

• mtDNA levels significantly dropped between pre- and post-colectomy 

plasma samples for patients with ASUC 
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3.4 Discussion 
 

3.4.1 Precision medicine & the future role of 

biomarkers in IBD 
 

3.4.1.1 Precision medicine 

The completion of the human genome project in 2003 represented a major 

scientific landmark, ushering in a new era with hopes and expectations of fresh 

insights into disease mechanisms and treatments. In IBD, many important 

discoveries soon followed, notably the identification of more than 200 genetic 

susceptibility loci and characterisation of the gut microbiome (Huttenhower et 

al., 2012). As ‘big data’, driven by advances in technology, becomes 

increasingly available and affordable, individuals with IBD and clinicians alike 

yearn for tangible outcomes from the promise of ‘precision medicine’ – precise 

diagnosis, monitoring and treatment.  

 

Precision medicine is a major priority in health care, now recognised by all 

major stakeholders including governments, the pharmaceutical industry, 

clinicians and patients. In January 2015, United States President Barack 

Obama announced the Precision Medicine Initiative® (PMI): a concerted effort 

by multiple government agencies and backed by $215 million in federal funds 

to help facilitate a greater understanding of individual disease variability and 

its clinical translation (Collins and Varmus, 2015). A major component is the 

PMI Cohort Program, an ambitious plan to build a national research cohort of 

more than one million participants in a participant-centred, data-driven manner 
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with integrated multi-omic profiling. The PMI working group’s report (Hudson, 

Lifton and Patrick-Lake, 2015) identified key scientific opportunities including 

a number relating to the importance of biomarkers (Table 3.3). Similarly, the 

Chinese government has plans to invest 20 billion yuan (around $3 billion) to 

support precision medicine research by 2030. In the UK, the 100,000 genomes 

project was launched in 2012 with the goal of large-scale integration of genetic 

information and health records from the National Health Service 

(http://www.genomicsengland.co.uk). In the same year, the National Phenome 

Centre was launched in UK, offering broad access to exploratory and targeted 

high-throughput metabolic phenotyping and computational biology facilities. 

These massive undertakings are potential game changers in the field of 

biomarker discovery and validation.  

 

• Translating already identified environmental and genetic risk factors 

into conclusions on disease causes and population impact with 

population-based cohort studies as well as identifying new 

associations. 

• Interrogation of the wide variation in therapeutic response and 

adverse reactions 

• Discovery of biomarkers for identification of individuals with higher 

risks of developing disease to help more rational prevention efforts 

• Novel classification systems which transcend the existing grouping 

based on symptoms, signs, lab results by using molecular 

characterisation 

• Using biomarkers to assign patients into a variety of clinical trials 

targeting subsets based on these biomarkers to help with 

development of novel therapies 

Table 3.3: Biomarker focussed scientific opportunities identified by the PMI 
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In IBD, the successful international partnerships in genetics and microbiome 

research already provide grounds for realistic optimism. A major concern 

remains the wide-ranging nature of the stochastic elements of IBD, which 

represent formidable hurdles with respect to study design and measurable 

outcomes. In our field, current creative research approaches are now 

beginning to integrate across molecular datasets (e.g. genetic + microbiome), 

override traditional boundaries of disease classifications (UC vs. CD) and most 

notably, increasingly rely on patient input using new technological applications 

to characterise the ‘exposome’ in IBD. Hence, a new theme of recombinant 

innovation is emerging with synergy arising from novel ideas within established 

and fresh datasets. 

 

3.4.1.2 Progress towards precision medicine in IBD 

 

Disease susceptibility, activity & behaviour  

Although genetic data has provided invaluable insights into disease 

pathogenesis, the role for genetic data in predicting susceptibility, activity and 

disease behaviour however is less strong. Genetic information allied with other 

biological data (e.g. pheno-genomic status), maybe more informative.  The 

strongest genetic signal, NOD2 status has been associated with ileal and 

fibrostenosing disease but the carriage of NOD2 mutant allele is uncommon. 

A combination of clinical, serological and genotypic data has been used to help 

predict the risks of surgery in CD (Dubinsky et al., 2013). Recently, a study of 

29,838 IBD patients tested for genetic-phenotype associations found that 
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predictive models based on generated genetic risk scores strongly 

distinguished colonic from ileal CD (Cleynen et al., 2015).  

 

Away from predicting susceptibility and behaviour in IBD, there is an unmet 

need for sensitive biomarkers to measure gut mucosal inflammation, which is 

necessary to provide objective data on disease activity and guide response to 

treatment. Presently, CRP and faecal calprotectin have better negative 

predictive values and are thus more useful in excluding significant 

inflammatory signals. Some progress can be expected in modalities to image 

inflammation (e.g. MRI) with or without the use of specific in-vivo labelling of 

inflammatory cells or targets. A recent study used confocal laser 

endomicroscopy to detect fluorescent antibody labelled membrane-bound 

TNF in intestinal immune cells of 25 CD patients and thus identify patients who 

are most likely to respond to anti-TNF therapy (Atreya et al., 2014). 

Furthermore, a re-thinking of ways to measure established biomarkers such 

as a measuring serum (rather than faecal) calprotectin may improve the 

performance and applicability of these tests (Kalla et al., 2016).  

 

In search of better disease activity prediction, current approaches such as 

those exemplified by the EMBARK study (Faubion et al., 2013) investigates 

panel of biomarkers by their correlations with endoscopy and radiological 

findings as the best reference measure. Such reference measure captures 

disease extent; location and burden well but are not specific enough to take in 

disease behaviour, complications and progression. As will be discussed later, 
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better biomarkers of activity may come from a refined approach measuring 

specific downstream effects of the biological pathway targeted. 

 

Prediction of drug response and adverse effects 

Exploiting the wealth of genetic data, the combination of phenotypic 

information with multiple susceptibility loci is shown to be predictive of primary 

non-response in anti-TNF therapy in paediatric IBD (Dubinsky et al., 2010). 

There have been some notable successes in transcriptomics (gene 

expression) in IBD. Lee et al. showed that CD8+ T-cell immune signatures are 

better at predicting disease course than traditional clinical or serological 

markers (Lee et al., 2011). Hence, this approach is useful to select individuals 

that might benefit from more aggressive medical treatment. At the mucosal 

level, one study of infliximab in UC used gene signatures to separate 

responders from non-responders with 95% sensitivity and 85% specificity 

(Arijs et al., 2009).  

 

In terms of predicting adverse effects, GWAS of azathioprine induced 

pancreatitis found increased susceptibility for HLA-DQA1-HLA-DRB1 variants 

with a 2.5 fold increased risk in heterozygotes and a 5 fold increased risk in 

homozygotes at rs2647087 (Heap et al., 2014). Although an important finding, 

this potential biomarker highlights some of the difficulties encountered in 

translation to the clinic. For example, the low pre-test probability of pancreatitis 

means that even in the highest risk homozygotes, there is an 83% chance of 

taking thiopurines without developing pancreatitis. Would this justify the 
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exclusion of thiopurines in these patients? It will however improve risk 

counselling and awareness. In a future of greater therapeutic options, this may 

be more feasible. In addition, the number needed to test was 76, making it an 

expensive option for screening. However, cheaper point of care testing in the 

future, and the possible combination with other biomarkers could change the 

economics of such a test.  

 

3.4.1.3 Biological basis of biomarker discovery 

 

IBD clinicians will have increasing number of drugs available with over 20 

currently in the developmental pipeline (D’Haens et al., 2014)(Danese, 2012). 

Rather than a sequential approach of trying one drug after another, one of the 

goals for Precision Medicine is to identify individuals or disease phenotypes 

that are better suited for a particular drug from the outset (e.g. anti-leukocyte 

migration vs. anti-TNF for example).  

 

This direction is appealing and cogent where recent advances in oncology and 

virology have shown the way. In breast cancer, HER2 (human epithelial growth 

factor) positivity provides prognostic information (more aggressive phenotype 

with higher recurrence rates) as well as therapeutic choice (response to 

monoclonal antibodies targeting HER2 such as trastuzumab) (Arteaga et al., 

2011). In non-small cell lung cancer, mutations in multiple oncogenes including 

ALK and EGFR can help direct tyrosine kinase therapy (Lindeman et al., 2013). 

In hepatitis C, prior to the direct acting antiviral revolution, IL28B genotype 
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helped predict the likelihood of sustained viral response to interferon and 

ribavirin therapy.  

 

In metastatic colorectal cancer, KRAS gene mutations predict response to anti-

epidermal growth factor receptor (anti-EGFR) monoclonal antibody therapy 

(Allegra et al., 2009). Notably, the early studies were performed based on a 

hypothesis developed from an understanding of EGFR biology (Lièvre et al., 

2006); subsequent retrospective subset analysis of randomised controlled 

trials provided strong evidence for clinical use.  

 

3.4.1.4 Hypothesis free vs hypothesis-based biomarker 
discovery  

 

The critical question is: are we on the cusp of a therapeutic revolution 

underpinned by the inexorable wave of ‘hypothesis free’ big data, or will we 

end up drowning in a sea of potential biomarkers that we cannot translate into 

clinical practice? A number of critical enablers allow for optimism (Figure 1.2) 

including developments of large-scale prospective cohorts, advances in high 

throughput technology, advances in computational power and increasing 

emphasis on patient inputted data. 
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Figure 3.23: Critical enablers in the flow of precision medicine in inflammatory bowel disease (IBD) (Boyapati, Kalla, et al., 2016) 
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Notwithstanding all these major interventions, there is a need for a dose of 

realism. In cancer research, where investment has been far greater, there has 

been a decrease in the number of Food and Drug Administration approved 

protein biomarkers over the last decade (Pavlou, Diamandis and Blasutig, 

2013). In IBD, it is notable that biomarkers in existing use such as faecal 

calprotectin were found through hypothesis based investigation (Roseth et al., 

1992) rather than high throughput methods or in silico database analysis.  

 

Discovery based approaches are currently burdened by several significant 

challenges (Table 3.4) although some potential solutions have been identified 

(Table 3.5). Selection bias from convenience sampling and data overfitting can 

result in over-interpretation of ‘significant’ p-values, potentially wasting 

valuable resources on random noise. For example, a host of studies have 

identified genetic polymorphisms as predictors of therapeutic response in IBD 

(Mosli et al., 2014) but these have not been consistently replicated. Therefore, 

there remains room for advancements based on discoveries in related 

inflammatory conditions, serendipity and organic scientific thinking although 

big data now forms the ground for the generation of new hypotheses. 
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Methodological challenges 

• Selection bias using convenience sampling 

• Increased flexibility and non-linearity in algorithms leading to overfitting 

• Potential confounders including interaction between the different ‘omes’ 

(e.g. microbiome studies with effect of host genome), disease activity, 

duration, location and effects of drug treatment, study design, 

heterogeneous cohorts  

• Standardisation of all steps in the process of biomarker discovery is 

optimal but in practice, difficult to achieve.  

Cost challenges 

• Lack of support from pharma companies not wanting to fragment markets 

• Large costs associated with biomarker validation for those biomarkers 

proposed by unbiased -omics testing 

Integration & Adoption Challenges 

• Electronic medical record integration – difficulties in standardisation, poor 

quality and granularity of inputted data. National approach easier in some 

countries (e.g. UK with NHS) than others e.g. USA 

• Adoption and acceptance by physicians and patients 

• Teamwork and large collaboration across institutions is particularly critical 

in relatively low incidence diseases such as IBD with creation of standard 

protocols and large cohort’s obvious benefits but more complex, difficult 

and costly coordination an important challenge. 

• Privacy and data security 

Table 3.4: Challenges with –omics research 
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There are many potential solutions to help resolve some of the earlier identified 

issues. For example, the importance of consistency in sample acquisition and 

processing and keeping patient cohorts as homogenous as possible cannot be 

overstated. We are approaching the stage where ‘big data’ will no longer be 

the rate-limiting step to progress; instead, it will be the clinician or researcher’s 

ingenuity in leveraging these assets into new knowledge which will be crucial. 

Increasingly, more targeted therapies will require more defined biomarkers to 

measure their effects on the respective biological pathways. This sets the 

scene for stratified clinical trials as seen in oncology for example. 

 

• Same method of sample acquisition 

• Homogenous patient subsets 

• Studies of subjects with no prior medical therapy 

• Data-driven approaches such as network interference 

• Require prospective studies with multiple time points 

Table 3.5: Potential solutions to help biomarker discovery 
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3.4.2 mtDNA as a biomarker in inflammatory diseases 
 

In addition to higher levels of mtDNA found in various inflammatory diseases 

(Section 1.3.5), many studies have additionally suggested its role as a 

potential biomarker. In trauma, studies have demonstrated correlation with 

injury severity (Lam et al., 2004; Nicole Y.L. Lam, Timothy H. Rainer, Rossa 

W.K. Chiu and Lo, 2004; Hsu et al., 2013) and found higher mtDNA levels in 

non-survivors compared to survivors (Hsu et al., 2013; Prikhodko et al., 2015). 

Further studies have found elevated plasma mtDNA is an independent 

predictor of SIRS in trauma patients (Gu et al., 2013) and correlates with SIRS 

score (Zhang et al., 2017).  

 

Di Caro et al. found higher mtDNA in the plasma of critically ill paediatric 

patients who were septic compared to similarly unwell but non-septic patients 

(Di Caro et al., 2015). Another study in severe sepsis demonstrated mtDNA to 

be more powerful as a prognostic indicator than either sequential organ failure 

assessment or lactate concentration (Kung et al., 2012). Similarly, some 

studies of patients in the intensive care setting have found that higher mtDNA 

levels are associated with poorer outcomes (Nakahira et al., 2013; Krychtiuk 

et al., 2015). In terms of chronic disease, a study found elevated anti-mtDNA 

antibodies in SLE, particularly in lupus nephritis where levels correlated with 

the lupus nephritis activity index better than did anti-dsDNA antibody levels (H. 

Wang et al., 2015). 

 

Collectively, these studies demonstrate the potential for mtDNA to be used as 

a biomarker in a variety of inflammatory diseases. 
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3.4.3 mtDNA as a potential novel biomarker in IBD 
 

3.4.3.1 Biomarker landscape in IBD 

Many dozens of potential genetic, blood-based, faecal, microbial and 

immunological biomarkers have been proposed in IBD (Dubinsky and Braun, 

2015; Sands, 2015). However, apart from a few notable exceptions, 

biomarkers have not yet found widespread clinical application in clinical 

practice for a variety reasons (Table 3.6).  

 

• Fails on the classic qualities of an ideal biomarker (simple, accurate, 

easy to perform, minimally invasive, cheap, rapid, reproducible) 

• Unclear or uncertain clinical utility: i.e. does not provide clinically 

useful information upon which to make decisions 

• low sensitivity/specificity 

• low prognostic/predictive values 

• Lack of validation: yet to be validated in independent cohorts or have 

had inconsistent results when validation has been attempted.  

• Some areas (such as microbiome-based biomarkers) are in their 

infancy 

Table 3.6: Problems with biomarkers that have not found widespread clinical 

application in IBD 

 

Most proposed biomarkers in IBD have failed to be implemented into clinical 

practice because they fail on the classic qualities of an ideal biomarker (simple, 

accurate, easy to perform, minimally invasive, cheap, rapid, reproducible) 

(Vermeire, Van Assche and Rutgeerts, 2006). 
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The use of DAMPs as biomarkers in IBD is established. The most relevant 

example is faecal calprotectin testing which has revolutionised IBD clinical 

practice with roles in differentiating IBD from functional gut disorders (Tibble et 

al., 2000); as a marker of disease activity (Lin et al., 2014) and to predict 

subsequent course of disease (Ho et al., 2009). Calprotectin is a major 

cytosolic protein found in neutrophils and other inflammatory cells and is 

released by stressed cells during intestinal inflammation. Faecal calprotectin 

is now also a measurable outcome in current clinical IBD therapeutic trials.  

 

The recent CALM study provides direct evidence for the benefit that 

biomarkers can play (Colombel et al., 2018). In this prospective, open-label, 

multicentre, active-controlled study in moderate-severe CD, treatment using 

an escalating therapy strategy based on symptoms alone was compared to 

symptoms and biomarker targets (CRP < 5 mg/L and faecal calprotectin level 

< 250 µg/g). The investigators found a significantly higher number of patients 

reached the primary endpoint of endoscopic remission as well as steroid free 

remission with the ‘treat-to-biomarker-target’ approach compared to the 

approach based on symptom management alone.  

 

As we move towards an era of ‘big-data’ (Section 3.4.1), hypothesis-free 

methods will propose many biomarkers going forward. However, a significant 

challenge remains to identify ‘functional’ biomarkers – i.e. those which have 

direct relevance to disease pathogenesis, which are more likely to help stratify 

patient populations that allow for yet further insights (Surinova et al., 2011; 

Boyapati, Kalla, et al., 2016).    
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3.4.3.2 Major findings 

The findings in this chapter are consistent with the potential role of mtDNA as 

a novel biomarker in IBD.  

 

mtDNA over a 5-day admission for ASUC 

Data from five randomly selected patients with ASUC who agreed to 

consecutive day sample collection during admission revealed day to day 

variability in mtDNA levels. Notably, all patients were on intravenous steroids 

during their admission. 

 

Some interesting observations may be made from this limited exploratory data. 

For example, mtDNA levels for patient 1 rose from day 2 to 3 whereas CRP 

consistently fell during the five days. Interestingly, this patient required a 

colectomy due to failure of medical therapy. Multiple samples from larger 

cohorts is required for both IBD patients and healthy controls to assess for 

inter-day and intra-day variability.  

 

It is interesting to note that mtDNA did not fluctuate in tandem with CRP for all 

patients. It is possible that mtDNA has a completely different acute phase 

response time compared to other biomarkers of inflammation. This would not 

be unexpected, given existing acute phase markers such as CRP and ESR 

temporally differ after an inflammatory insult.  

 

  



3. MtDNA as a biomarker in IBD  148 
 

Correlation with disease activity 

I found that mtDNA levels in UC correlated with disease severity as assessed 

by clinical indices. Patients with clinically mild-moderate UC had higher levels 

that those in clinical remission, and patients with severe disease had the 

highest levels. In CD, mtDNA levels in patients with clinical remission were 

significantly lower than those with severe disease but no different to those with 

mild-moderate disease.  

 

CD is a more heterogenous condition compared to UC with inflammation 

affecting anywhere from the mouth to the anus (vs. colon alone) and being 

transmural in nature often leading to fistulas, fibrostenotic strictures and 

abscesses (vs. confluent superficial inflammation). This heterogeneity in CD 

means that clinical indices may not correspond accurately to extent of 

inflammation. A recent study of over 500 IBD patients found a poor correlation 

between the HBI clinical index and endoscopic scores in CD, whereas there 

was a good correlation between the SCCAI and endoscopic scores in UC 

(Taleban et al., 2016). Given circulating mtDNA levels are likely a reflection of 

the extent of inflammation in IBD (and thus non-apoptotic cellular death and 

liberation of DAMPs), the more consistent finding between clinical indices and 

mtDNA in UC compared to CD is unsurprising.  

 

As expected in UC, patients with endoscopically mild disease compared to 

moderate or severe disease had significantly lower mtDNA levels. There was 

no significant difference found between the moderate and severe groups. It is 
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important to note that there are limitations to the endoscopy data: it was 

retrospective; classification was not blinded; and there was no central scoring 

of endoscopic severity. Endoscopists were, however, blinded to the mtDNA 

levels, and all endoscopists were senior IBD specialists capable of accurately 

reporting endoscopic severity in UC. 

 

A meta-analysis of the diagnostic accuracy of various biomarkers in IBD in 

predicting endoscopic activity found pooled area under the curve (AUC) for 

CRP and faecal calprotectin to be 0.49 (95% CI 0.34-0.64) and 0.88 (95% CI 

0.84-0.90) (Mosli et al., 2015). Based on the results presented here, 

prospective studies investigating the diagnostic utility of mtDNA in predicting 

endoscopic activity are warranted. 

 

Correlation with existing biomarkers of activity 

MtDNA correlated as expected with existing markers of severity including CRP 

(positive correlation), albumin (negative) and WCC (positive). This would be 

consistent with a recent publication of circulating DNA in elderly patients with 

venous thromboembolism which found strong correlations with CRP and WCC 

(Jiménez-Alcázar et al., 2018). A potential confounding factor was that most 

patients with severe disease were on corticosteroids at the time of sampling 

leading to elevated WCC. 

 

Serum calprotectin has recently been suggested as novel biomarker in IBD 

(Kalla et al., 2016). Kalla et al. found serum calprotectin significantly correlated 
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with CRP (r=0.41), WCC (r=0.37) and albumin (r=-0.39) in IBD patients and 

predicted colectomy with a AUC of 0.69 (similar to CRP in this cohort).  

 

Interestingly, I found that serum calprotectin had no significant correlation to 

either COXIII or ND2 mitochondrial genes in plasma, although there was a 

trend to significance for ND2 (r=0.35, p=0.06). This latter finding may be a 

result of multiple testing or a reflection of possible type II error. Notably, serum 

calprotectin did correlate positively and with COXIII (r=0.55, p=0.04) and ND2 

(r=0.60, p=0.02) when mtDNA was tested in serum. Matched serum samples 

tested for calprotectin and mtDNA were aliquots from the same processed 

sample; the stronger correlation found in serum vs. plasma may be a reflection 

of this (compared to plasma which was separately processed as per the 

plasma protocol).  

 

Prognostic indicator 

Colectomy was chosen as the ‘hard’ endpoint most commonly used in ASUC 

research. Of the 40 patients with ASUC, 12 (30.0%) underwent colectomy over 

the follow up period following admission for ASUC, similar to colectomy rates 

reported in the infliximab rescue therapy era (Jarnerot et al., 2005; Williams et 

al., 2016). 

 

I found that mtDNA performed similarly to CRP and albumin in predicting 

colectomy in ASUC (AUC 0.71, p=0.039). MtDNA compares favourably to 

other biomarkers reported in the literature including faecal calprotectin (AUC 
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0.65, p=0.04), serum calprotectin (AUC 0.69, 95% CI 0.53-0.81) and CRP 

(AUC 0.71. 95% CI 0.56-0.86) (Ho et al., 2009; Hare et al., 2014).  

 

Further studies might seek to validate this finding in another cohort. A larger 

cohort may also enable multivariable models to build a prognostic ‘score’ 

based on multiple biomarkers including mtDNA. In addition, its use as a 

prognostic marker for other outcomes in IBD such as predicting disease 

relapse, abdominal surgery and hospitalisation could be assessed. 

 

When a cutoff of 1,545 mtDNA copies/µL was used (guided by ROC curves 

for highest likelihood ratio), there was significant separation of the survival 

curves for colectomy on Kaplan-Meier analysis. This cut off requires validation 

other cohorts. However, in broad terms, this finding supports the idea that 

mtDNA levels may provide valuable prognostic information in some IBD 

patients.  

 

Characteristics of patients with high mtDNA levels 

The characteristics of patients with high mtDNA levels are of interest. An 

attempt was made to assess this through multivariable logistic regression 

analysis which found that only CRP was independently associated with high 

mtDNA levels. This is in keeping with the idea that a higher inflammatory 

burden is associated with higher mtDNA levels. A larger cohort may reveal 

further factors, which in turn could suggest further avenues of investigation.  
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Pre- and post-colectomy data 

Patients who underwent colectomy had post-colectomy mtDNA levels that 

were significantly lower than pre-colectomy levels. All patients were resampled 

in clinic at a variable number of days post colectomy (median Δ107 days, IQR 

89-189), and were in clinical remission with the diseased colon removed. This 

data is consistent with a possible role for mtDNA in monitoring disease activity 

over time. Furthermore, it is consistent with the hypothesis that mtDNA in the 

circulation arises from the inflamed gut in IBD (Chapter 4). Further studies with 

measurement of mtDNA at multiple time points would be useful to further 

define how mtDNA levels change post-colectomy. 
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3.4.4 Implications of findings 
 

In this thesis, I have gone some way to helping identify mtDNA as a potential 

novel biomarker. It is important to emphasise the exploratory nature of this 

work. Further investigation is required, initially for validation of these findings, 

and subsequently to explore potential clinical or research applications. 

Nevertheless, I have shown that in some patients, plasma mtDNA levels 

correlate with disease activity and severity, and find mtDNA (and mitochondrial 

DAMPs more generally) to be a potential mechanistic biomarker in IBD.  

 

Earlier, I highlighted the importance of such functional biomarkers to identify 

sub-mechanisms that drive the heterogenous clinical presentations and 

disease progression in IBD, where specific therapeutic interventions can be 

stratified accordingly (Section 3.4.1). However, several challenges exist to 

adoption of mtDNA as a biomarker. These include the variation in the 

methodology in which mtDNA is measured and reported in the literature (e.g. 

serum vs plasma, mtDNA specific PCR primers, plasma processing protocol). 

Standardisation of these protocols, including identification of ‘normal’ and 

‘abnormal’ ranges, will be important prior to clinical use. Furthermore, further 

studies reporting clinically relevant predictive statistics in a variety of 

inflammatory conditions are required. 
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4.1 Introduction 
 

Data presented in chapters 2 and 3 show elevated plasma levels of mtDNA in 

patients with IBD, with a potential role as a biomarker. A pertinent question is 

whether this observation is simply an epiphenomenon in IBD, or whether these 

mitochondrial DAMPs play a role in instigating and/or perpetuating 

inflammation. To investigate the precise contribution of mtDNA to IBD related 

inflammation would entail a substantial body of work in itself, beyond the time 

and funding constraints of this project. 

 

As discussed earlier, a pro-inflammatory milieu of DAMPs along with mucosal 

oxidative stress and deregulation of homeostatic pathways after initial non-

apoptotic cell death may promote further and ongoing intestinal damage 

(Boyapati, Rossi, et al., 2016). I hypothesised that if mitochondrial DAMPs had 

a pathogenic role in the inflammation seen in IBD, they would be released at 

the level of the inflamed gut. In this chapter, I pursue multiple lines of evidence 

to investigate this hypothesis.  

 

Firstly, mtDNA analysis of stool samples was performed to test the hypothesis 

that raised levels would be found in patients with IBD due to mitochondrial 

DAMP release into the faeces. This is conceptually similar to the DAMP 

S100A/9 (calprotectin) which is measured in the stool to test for gut 

inflammation. Secondly, transmission electron microscopy (TEM) of colonic 

epithelium from IBD patients was used to assess the presence of damaged 

mitochondria. Thirdly, expression of the downstream target of mtDNA (TLR9) 

was assessed in IBD vs non-IBD colonic specimens.  
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4.2 Methods 
 

4.2.1 Stool mtDNA analysis 
 

Stool collection 

Stool was collected using a Sterilin Polystyrene 30mL container 

(ThermoFisher) and immediately stored at 4oC. Within 4 hours, the sample 

was transferred to -80oC until further use. 

 

Isolation of DNA from stool 

DNA was isolated using the QIAamp DNA Stool Mini Kit as per manufacturer’s 

instructions. At Step 2, ASL buffer is used in the protocol; samples were 

processed in duplicate with one using the ASL buffer and one using phosphate 

buffered saline (PBS; to minimise processing-related liberation of DAMPs). 

PBS data is presented for mtDNA quantification. 

 

200 mg of stool was placed in a 2mL microcentrifuge tube and placed on ice. 

1.6mL of PBS or ASL buffer (see above) was added to each stool sample and 

then pulse-vortexed continuously until the stool sample was thoroughly 

homogenised (at least 1 minute). This was then centrifuged at 20,000g to pellet 

the stool particles. 1.4mL of the supernatant was then transferred to a new 

2mL tube and the pellet was discarded. 1 InhibitEX Tablet (Qiagen) was added 

to the sample and vortexed immediately and continuously for 1 minute (until 

the tablet was completely suspended). The suspension was then incubated for 

1 minute at room temperature (15-25oC) to allow inhibitors to adsorb to the 
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InhibitEX matrix. The sample was then centrifuged at full speed for 3 minutes 

to pellet stool particles and inhibitors bound to InhibitEX matrix. Immediately 

post centrifugation, the supernatant was transferred to a new 1.5mL 

microcentrifuge tube and the pellet was discarded. The sample was 

centrifuged at 20,000g for 3 minutes.  

 

25µL proteinase K was added to a new 2mL microcentrifuge tube and 600µL 

of supernatant from the sample was added. 600µL of Buffer AL was added and 

vortexed for 15 seconds. This was then incubated at 70oC for 10 minutes and 

then 600µL of ethanol (96-100%) was added to the lysate, and then mixed by 

vortexing. 

 

600µL of the lysate was then applied to the a QIAamp (Qiagen) spin column 

and centrifuged at 20,000g for 1 minute. The spin column was placed in a new 

collection tube and the filtrate was discarded. A second aliquot of 600µL lysate 

was applied to the spin column and centrifuged at 20,000g for 1 minute. The 

spin column was placed in a new collection tube and the filtrate was discarded. 

A third aliquot of 600µL lysate was applied to the spin column and centrifuged 

at 20,000g for 1 minute. The spin column was placed in a new collection tube 

and the filtrate was discarded.  

 

500µL of Buffer AW1 was then added to the spin column and centrifuged at 

20,000g for 1 minute. The spin column was placed in a new collection tube 

and the filtrate was discarded. 500µL of Buffer AW2 was then added to the 
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spin column and centrifuged at 20,000g for 3 minutes. The spin column was 

placed in a new collection tube and the filtrate was discarded. This was then 

centrifuged at 20,000g for a further 1 minute to help eliminate the chance of 

possible Buffer AW2 carryover. 

 

The spin column was transferred to a new 1.5mL microcentrifuge tube and 

200µL of Buffer AE was applied directly onto the QIAamp membrane. This was 

incubated for 1 minute at room temperature and then centrifuged at full speed 

for 1 minute to elute the DNA, with the elute stored at -20°C until analysed. 

 

qPCR for absolute quantification of mtDNA in stool 

The method previously described (Section 2.2.7) was used to quantify mtDNA 

in stool samples.  

 

4.2.2 Transmission Electron Microscopy 
 

Colonic pinch biopsies from IBD and non-IBD controls were obtained from 

distal colon during colonoscopy, briefly washed with sterile PBS and 

immediately transferred into 3% electron microscopy grade glutaraldehyde 

solution in 0.1M Sodium Cacodylate buffer, pH 7.3, for 2 hours before further 

processing (details available on request). For mouse studies, colons were 

flushed with PBS before transfer into electron microscopy solution as above. 

All TEMs were carried out at Electron Microscopy Unit, King’s Building, 

University of Edinburgh. 
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4.2.3 Immunohistochemistry 
 

Parrafin-embedded gut sections of healthy individuals, and individuals with 

IBD were provided by the Western General pathology department (via Dr 

Joseph Loane) using the Scottish Tissue Bank via Scottish Academic Health 

Sciences Collaboration (SAHSC) SR493. All IBD samples were coded and 

matched (sex, age and tissue location) with a non-IBD control group. 

 

I am grateful to Dr Arina Tambrowska who optimised the protocol and 

performed the immunohistochemistry described below. The IHC protocol was 

optimised by testing various antigen retrieval protocols and primary antibody 

concentrations.  

 

The sections were deparaffinised in xylene, rehydrated and retrieved using 

Tris-EDTA buffer. The endogenous peroxidase activity was quenched with 3% 

hydrogen peroxide. The sections were immunostained with polyclonal anti-

TLR9 antibody (ab52967, Abcam) using Vectastatin Elite ABC Kit (Vector 

Laboratories) and diaminobenzidine. The sections were counterstained, 

cover-slipped and imaged with Zeiss Axiovert200 microscope using AxioVision 

4.6 acquisition software (Carl Zeiss). 
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4.3 Results 
 

4.3.1 Higher faecal mtDNA levels in ASUC 
 

4.3.1.1 Processing methodology 

In step 2 of the QIAamp DNA stool mini kit protocol, ASL buffer is used for lysis 

of stool samples. 6 samples were processed in duplicate with a single 

difference: ASL was substituted with PBS. The samples processed with ASL 

had significantly higher levels of mtDNA detected compared to matched PBS 

samples (1027 copies/nL [IQR 11.75-374] vs 171 copies/nL [193.2-2631], 

p=0.03, Wilcoxon), likely due to processing related liberation of mtDNA with 

ASL (Figure 4.1).  

 

Figure 4.1: Comparison of matched samples with PBS and ASL used for step 

2 of the QIAamp DNA stool mini protocol. 

 

Herein, data from the PBS method is presented. 
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4.3.1.2 Faecal mtDNA is significantly elevated in ASUC 

12 individuals with ASUC and 12 healthy controls were prospectively recruited 

to provide stool samples. 

 

Significantly higher mtDNA levels (p<0.0001) were found in ASUC compared 

to non-IBD controls (222 copies/nL [IQR 19-313] vs. 1 copy/nL [IQR 0-7]) 

(Figure 4.2).  

 

Figure 4.2: Faecal mtDNA (copy/nL) in active UC and non-IBD controls 

(n=12/group). Median ± IQR. 
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4.3.2 Matched stool vs plasma mtDNA  
 

Of the 12 faecal samples analysed for mtDNA levels, 8 had matched (same 

day) plasma mtDNA data available for analysis (figure 4.3). There was no 

statistically significant correlation found (Spearman’s r = 0.60, p=0.13).  

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Faecal mtDNA (copy/nL) with matched plasma mtDNA (copy/mL) 

in active UC (n=8). 
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4.3.3 Active IBD is associated with mucosal 

mitochondrial damage 
 

6 individuals with active UC and 6 non-IBD controls were prospectively 

recruited for pinch biopsies collected from the affected colon at time of 

colonoscopy. Patient characteristics are listed in Table 4.1.  

 

Case Age / Sex Clinical Description 

UC 1 23 years, Female Active proctitis (UC), Mayo 2 

UC 2 44 years; Male Active left sided UC, Mayo 1 

UC 3 41 years, Female Active pan-UC, Mayo 2 

UC 4 20 years, Male  Active left sided UC, Mayo 2 

UC 5 33 years, Male Active severe UC, to point of insertion 
(descending), Mayo 3 

UC 6 49 years, Female Active proctitis (UC), Mayo 1 

HC 1 56 years; Male Investigated for abdominal pain and weight 
loss; normal 

HC 2 45 years; Female Investigated for iron deficiency anaemia; 
internal haemorrhoids only 

HC 3 62 years, Male Investigated for PR bleeding; sigmoid 
diverticular disease found otherwise normal 

HC 4 55 years, Male Investigated for altered bowel habit and 
family history bowel cancer; normal 

HC 5 39 years, Female Investigated for iron deficiency anaemia; 
normal 

HC 6 71 years, Male Surveillance scope post polypectomy 2 
years ago; left sided diverticular disease 
otherwise normal 

Table 4.1: Clinical characteristics of individuals for transmission electron 

microscopy studies of distal colon. Mayo score refers to endoscopic 

classification (Appendix F) 
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Transmission electron microscopy (TEM) of the colon showed evidence of 

mitochondrial damage (with loss of inner cristae structure, increased lucency 

with swollen rounded appearances) in areas of cellular injury and were also 

extravasated within sub-epithelium in affected UC.  

 

Representative images are shown in Figure 4.4 and images from participants 

are shown in Figure 4.5.  
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Figure 4.4: Representative transmission electron microscopy of distal colonic epithelium from active UC vs. non-IBD controls (n= 6/group; 

bar = 5µm). Annotated image: Purple – damage mitochondria (DM), Blue – healthy mitochondria (HM) and yellow – lipid droplets (LD). 

Black scale bar 2µm. Yellow insert – Damaged and healthy mitochondria from UC and controls respectively (Orange bar 0.5 µm). 
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Figure 4.5: Representative colonic TEM images of 6 UC vs. 6 non-IBD individuals. 

Panel A – UC; Panel B – Non-IBD controls. Black bar - 2µm. Red arrows denote 

damaged mitochondria. 
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4.3.4 Immunohistochemistry 
 

Colonic resection specimens from 14 IBD (7 UC and 7 CD) and 14 non-IBD 

controls were obtained for analysis.  

 

We analysed TLR9 protein expression in human IBD colonic resection 

specimens and found increased frequency of lamina propria TLR9+ve cells in 

active UC and CD. Representative IHC is presented in Figure 4.6 and cell 

count data presented in Figure 4.7. 

 

 

 

 

 

 

Figure 4.6: Immunohistochemistry for anti-TLR9 in human IBD colon (UC and 

CD; n=7/group vs. non-IBD control; n=14). Red arrows – TLR9 positive cells. 

Black scale bar 100 µm. 
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Figure 4.7: TLR9+ve cell counts in lamina propria (LP) of human IBD colon 

per 2mm2 (UC and CD; n=7/group vs. non-IBD control; n=14). Mean ± SEM. 
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4.4 Discussion 
 

4.4.1 Summary 
 

The main finding of this thesis is that mitochondrial DAMPs can be found in 

the circulation of patients with active IBD (Chapter 2). Given that DAMPs are 

released during times of cellular stress and necrosis, this release is likely to 

occur at the gut mucosal level (Boyapati, Rossi, et al., 2016). Local release of 

mtDNA at the site of inflammation would be in keeping with findings of higher 

mtDNA levels in the cerebrospinal fluid of patients with subarachnoid 

haemorrhage (Wang et al., 2013), traumatic brain injury (Walko  3rd et al., 

2014) and multiple sclerosis (Varhaug et al., 2016). More specifically to IBD, 

local release fits conceptually with the clinically useful finding of higher levels 

of another DAMP (calprotectin) in the stool in patients with gut inflammation. 

 

The results in this chapter help support the hypothesis that mtDNA found in 

the circulation of IBD patients is released locally at the sites of inflammation in 

the gut. However, the functional consequence of mtDNA in IBD remains 

unclear. Significant further research, including in vivo studies, are required 

before this is demonstrated and any potential for therapeutic targets may be 

pursued (discussed further in Chapter 5). Time and resource restraints meant 

that a definitive exploration of mitochondrial DAMP release from inflamed 

mucosa and the functional consequence on this was thought to be 

unachievable.  
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I hypothesise that when present in overwhelming concentrations at the gut 

mucosal level, mtDNA may help instigate or propagate this inflammation. Prior 

to discussing the major findings in this chapter (Section 4.4.4), I present the 

current understanding of the cellular mechanisms of mtDNA as an 

inflammatory mediator including its release, clearance and manner in which 

mtDNA is thought to promote inflammation. 

 

4.4.2 mtDNA release and clearance 
 

4.4.2.1 Mechanisms of mtDNA release 

Two levels of mtDNA release, cytosolic and then extracellular, are critically 

important steps. In the former, the mechanism of release of mtDNA from 

mitochondria relies on the opening of mitochondrial permeability transition 

pores in the inner mitochondrial membrane (Patrushev et al., 2004). Inhibition 

of pore opening with cyclosporine A resulted in lower mtDNA in the cytosol 

after stimulation with LPS and ATP (Nakahira et al., 2011). Ding et al. showed 

that the induction of ROS using ox-LDL increased mtDNA leakage into the 

cytosol in a dose dependent manner, and this effect was ameliorated with 

blockade of the ox-LDL receptor or a ROS inhibitor (Ding et al., 2013).  

 

In terms of extracellular release, cellular stress and necrosis are primary 

factors in the non-discriminant liberation of a host of mitochondrial components 

such as mtDNA, N-formyl peptides, ATP, TFAM and mitochondrial lipids. 

These mitochondrial constituents also exert their respective effects, which is 
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wide-ranging on key inflammatory pathways (extensively reviewed by 

Nakahira et al. (Nakahira, Hisata and Choi, 2015)). Aside from this non-

selective release after uncontrolled cell death, several studies have suggested 

additional mechanisms such as necroptosis (or programmed necrosis) 

(Kaczmarek, Vandenabeele and Krysko, 2013). Blood transfusion induced 

endothelial necroptosis was recently found to increase extracellular mtDNA as 

a potential mechanism to explain transfusion related lung injury (Mangalmurti 

et al., 2016). A recent study suggested that during necroptosis, mitochondria 

were released before plasma membrane rupture and they are then 

phagocytosed by monocyte-derived macrophages or dendritic cells triggering 

an inflammatory response as evidenced by cytokine production and cell 

maturation respectively (Maeda and Fadeel, 2014). Thus, ingestion of intact 

mitochondria may represent a distinct uptake mechanism following 

necroptosis.  

 

In a separate study, platelets were also found to be a source for free 

extracellular mitochondria release and they then act as an endogenous 

substrate for bactericidal secreted phospholipase A2IIA (sPLA2-IIA) leading to 

mitochondrial membrane hydrolysis, loss of mitochondrial structural integrity 

and mtDNA release (Boudreau et al., 2014). Intriguingly, Xin et al. found lower 

levels of mitochondria-derived ROS (mtROS) production when metformin was 

added to activated platelets and this was associated with decreased 

extracellular mtDNA release (Xin et al., 2016). The authors found lower 
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complex I activity of the platelet mitochondrial respiratory chain, and suggested 

this as a mechanism for the observed suppressed mitochondrial dysfunction.  

 

Whether there is an active element in mtDNA release is an interesting point of 

consideration. Active cellular transfer of mitochondria from stromal cells to 

rescue stricken lung alveoli cells in acute lung injury has been demonstrated 

(Islam et al., 2012). Extracellular vesicles are important modes of intercellular 

communication and comprise of exosomes (endosomal) and microvesicles 

(plasma membrane derived), and is directed by exocytosis. Both chromosomal 

DNA (Balaj et al., 2011; Waldenström et al., 2012) and mtDNA have been 

observed in extracellular vesicles (Guescini, Genedani, et al., 2010; Guescini, 

Guidolin, et al., 2010; Ye et al., 2017). In non-alcoholic steatohepatitis patients 

(NASH), a greater percentage of mitochondria were found inside extracellular 

microparticles and a higher percentage of microparticles contained 

mitochondria compared with lean subjects (Garcia-Martinez et al., 2016). 

Additionally, a recent study found genomic DNA and mtDNA to be mainly 

detected in microvesicles, with only low levels found in exosomes (Cai et al., 

2017). 

 

Further clarification is required on the concentration and significance of mtDNA 

in extracellular vesicles, and whether this has different immunostimulatory 

effects compared to cell-free or surface bound mtDNA. A recent study in 

chronic heart failure patients found plasma-derived exosomal-bound mtDNA 
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triggered an inflammatory response which could be blocked by chloroquine (a 

TLR9 inhibitor) (Ye et al., 2017)..  

 

As previously mentioned, the pro-inflammatory effects of mtDNA is dependent 

on its oxidisation (Shimada et al., 2012; Pazmandi et al., 2014). The highly 

oxidative extracellular milieu at sites of tissue inflammation in patients with 

chronic inflammatory disease may overwhelm anti-oxidant systems, further 

potentiating the inflammatory potential of DAMPs such as mtDNA (Boyapati, 

Rossi, et al., 2016). 

 

4.4.2.2 MtDNA degradation & clearance 

Several well-described clearance mechanisms limit the pro-inflammatory 

nature of mtDNA. Autophagy, as discussed earlier, is important (Oka et al., 

2012) and defective autophagy is strongly linked to IBD. A proportion of 

circulating DNA in the bloodstream appears to cross the kidney barrier and be 

excreted in the urine (Botezatu et al., 2000). Indeed, mtDNA has been detected 

in the urine at elevated levels in patients with progressive acute kidney injury 

(Whitaker et al., 2015). This may be due to inflammatory state associated with 

this condition, the increased clearance with a disturbed kidney barrier or both.  

 

Another possible mechanism of mtDNA clearance is phagocytosis by 

macrophages in a similar manner to the ingestion of the structurally similar 

bacterial DNA (Stacey, Sweet and Hume, 1996). As described earlier, the 

outcome of phagocytosis of intact mitochondria may be pro-, rather than anti-
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inflammatory; these divergent effects may also be dependent on the 

phenotype of the phagocytosing cells (e.g. inflammatory vs. pro-resolution 

macrophages/monocytes, neutrophils and red blood cells) (Maeda and 

Fadeel, 2014; Mangalmurti et al., 2016).  

 

In general, non-host DNA in the circulation is digested in part by circulating 

nucleases, and mtDNA may be affected by a similar mechanism (Lo et al., 

1999). Intracellularly, DNases found in the autophagolysosome play a vital role 

to degrade mtDNA (Okabe et al., 2005; Oka et al., 2012). Oka et al. showed 

that cardiac-specific deletion of DNAse II resulted in mtDNA accumulation in 

cardiomyocytes and the development of heart failure (Oka et al., 2012). In 

human umbilical vein endothelial cells (HUVECs), lysosomal DNases protect 

cells against inflammation from mtDNA damage induced by ox-LDL (Ding et 

al., 2013). Here, siRNA knock down of DNAase II amplifies mtDNA-TLR9 

mediated inflammatory response (Ding et al., 2013).  

 

It is unclear whether nucleases have a similar action on mtDNA in the 

extracellular space or is relevant in the physiological setting, especially when 

mtDNA are present in microvesicles or housed within intact mitochondria, 

which protect against DNase II. Intriguingly, DNase pre-treatment abolished 

renal mitochondrial injury that was observed after injection of mitochondrial 

debris (including mtDNA) in mice (Tsuji et al., 2015). The precise role of DNase 

and its effect on the immunostimulatory effects of mtDNA is likely to be more 
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complex, however, as illustrated by a recent study which showed DNase II was 

required for TLR9 activation by bacterial genomic DNA (Chan et al., 2015).    

 

4.4.3 MtDNA inflammatory pathways  
 

Current evidence shows that mtDNA-mediated inflammation is predominantly 

driven by the TLR9-, inflammasome- and more recently, STING pathways. 

 

4.4.3.1 Toll-like receptor (TLR9) 

TLR9 is located in the ER of various immune cells and translocates to the 

endosome upon sensing of hypomethylated DNA with CpG motifs, such as 

bacterial DNA (Latz et al., 2004; Leifer et al., 2004). Given its high frequency 

of unmethylated CpG dinucleotide repeats, it is postulated that mtDNA 

mediates inflammation dependent on the TLR9 pathway and potentially exerts 

a similar effect to bacterial CpG. TLR9 recognises a variety of types of 

oligodeoxynucleotides (ODNs) – for example, class A ODNs preferentially 

activate plasmacytoid dendritic cells whilst class B CpG ODNs activate B cells 

(Moseman et al., 2004). Some of our understanding of how mtDNA may 

interact with TLR9 is extrapolated from work with class A ODNs, although they 

do not necessarily have the same effect. After activation of TLR9 by CpG DNA, 

inflammatory cytokine induction and Th1 immune responses occur (Hemmi et 

al., 2000) and TLR9 is necessary in CpG DNA driven responses (Bauer et al., 

2001). TLR9 ligands can preferentially activate downstream pathways 

including pro-inflammatory NFKB, and NLRP3 inflammasomes; and IRF-7 
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dependent type 1-IFN that can upregulate IL-1 receptor antagonist (Sasai, 

Linehan and Iwasaki, 2010; Petrasek et al., 2011).  

 

Most tissue injury models show better outcomes when tlr9 gene is deleted. 

Wei et al. recently observed tlr9-/- mice have improved survival outcome in a 

necrotic lung model of cationic nanocarrier induced necrosis and mtDNA 

release in vivo (Wei et al., 2015). Furthermore, the pulmonary inflammation 

seen post injection of mtDNA, was significantly reduced in tlr9-/- and MyD88-/- 

mice, underlining the importance of TLR9-MyD88 pathway (Wei et al., 2015). 

Intravenous injection of mitochondrial debris with substantial amounts of 

mtDNA into mice induced a systemic inflammatory response in wild type mice 

which was significantly attenuated in tlr9-/- mice (Tsuji et al., 2015). Tlr9-/- mice 

also have better survival compared to wild-type counterparts in severe renal 

ischaemia reperfusion injury with associated decreased circulating mtDNA 

(Bakker et al., 2015). A similar protective effect is also seen in tlr9-/- mice with 

acute acetaminophen overdose with observed lower serum mtDNA and an 

absence of lung inflammation in contrast to the findings of wild type mice 

(Marques et al., 2012). Nevertheless, the reduction in mtDNA in tlr9-/- mice is 

intriguing and could be explained by the reduced inflammation with lower 

resultant cellular necrosis.  

 

Alternatively, it is possible that TLR9 is somehow involved in mtDNA release 

into the extracellular circulation. In a recent study using a murine model of non-

alcoholic steatohepatitis (NASH), mtDNA from NASH hepatocytes resulted in 
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greater activation of TLR9 than mtDNA from control livers (Garcia-Martinez et 

al., 2016). This suggests that mtDNA that is selectively modified during 

pathologic disease processes can augment the ensuing inflammatory 

response. Similarly, the level of TLR9 expression (due to various factors) 

appears to be important. In those with high mtDNA levels, higher TLR9 

expression is associated with increased mortality in ICU as earlier discussed 

(Arnalich et al., 2012).  

 

Neutrophils have received the most attention in studies on mtDNA-TLR9 

signalling in several different inflammatory settings. Zhang et al. found that 

mtDNA activates neutrophil p38 mitogen activated protein kinase (MAPK) 

through TLR9 with release of MMP8 (matrix metalloproteinase) and MMP9 

(Zhang et al., 2010; Zhang, Itagaki and Hauser, 2010), a finding confirmed in 

another study where phosphorylated p38 and MMP9 increased after mtDNA 

treatment of neutrophils (Sudakov et al., 2015). A separate study reported 

similar findings where pre-treatment with TLR9 inhibitor ODN2088 inhibited 

activation of p38 MAPK and release of MMP-8 (Wei et al., 2015). Gu et al. also 

found intratracheal administration of mtDNA provokes lung inflammation 

through TLR9-p38 MAPK (Gu et al., 2015). Hip fracture in rats resulted in 

mtDNA release into circulation as well as higher TLR9 and NF-KB p65 

activation and subsequent lung injury (Gan et al., 2015). The role of other 

MAPKs such as extracellular signal-regulated kinases (ERK) and c-Jun N-

terminal kinases (JNK) remain unclear, and to our knowledge unexamined in 

this context. These data suggest a pathway where mtDNA activates 
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neutrophils through TLR9 binding and activation of the MAPK pathway with 

subsequent MMP8 and MMP9 release. 

 

In considering mtDNA vis-à-vis the site and location of TLR9 receptor, mtDNA 

must be either displaced from whole mitochondria and moved into the cytosol 

or when extracellular, internalised by some mechanism(s) to act on endosomal 

TLR9. The endosomal location of TLR9 is most likely a mechanism to avoid 

unwanted activation (Barton and Kagan, 2009). It is unclear how extracellular 

mtDNA are internalised but possibilities include endocytosis, transmembrane 

diffusion, phagocytosis and receptor mediated endocytosis (Ziello, Huang and 

Jovin, 2010). Transmembrane diffusion is unlikely due to the highly 

(negatively) charged nature of DNA, which makes it difficult to pass through 

the cellular membrane. A recent study found that monocyte derived 

macrophages can take up whole mitochondria released from necroptosis 

suggesting that phagocytosis could be a relevant mechanism (Maeda and 

Fadeel, 2014). Given that the macrophage also has a clear role in resolving 

inflammation by clearing up cellular debris and apoptotic bodies, inadequate 

clearance of mitochondria following non-apoptotic cell death may lead to 

cellular corpses with mtDNA still abundantly present, being internalised by 

phagocytosis.  

 

Typically, apoptotic corpses can suppress the transcription of pro-inflammatory 

cytokine genes, promote the secretion anti-inflammatory cytokines by 

phagocytes, and cause antigen-presenting cells to present dead cell antigen 
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in a manner that promotes immunological tolerance (reviewed by Zitvogel et 

al. (Zitvogel, Kepp and Kroemer, 2010)). It will be of interest to consider the 

fate of mtDNA when macrophages or dendritic cells phagocytose cellular 

corpses with mtDNA. Does this clear the mtDNA or does it regulate 

subsequent functions (e.g. immune responsiveness) in these cell types? This 

has yet to be studied in detail. It is also possible that binding to additional 

cofactors may facilitate the internalisation into immune cells and in this 

instance, HMGB1 and RAGE have been implicated (Tian et al., 2007). In this 

study, HMGB1-CpG (class A) complexes resulted in TLR9/RAGE association 

and recruitment of MyD88 in B cells (Tian et al., 2007). Here, RAGE was 

visualised as associating with the DNA and was internalised with some 

sequestered in endosome-like structures. However, this possible mechanism 

requires further investigation. It has also been proposed that activation of 

autoreactive B cells by CpG DNA occurs after B cell receptor engagement 

leading to delivery of CpG DNA to endosomal TLR9 (Viglianti et al., 2003).  

 

Although nucleic acid-sensing TLRs on immune cells are mainly found within 

cells, cell surface expression has also been described. Using flow cytometry, 

TLR9 has been detected on surface of resting B lymphocytes (Dasari et al., 

2005; Baiyee et al., 2006) and peripheral blood mononuclear cells (Eaton-

Bassiri et al., 2004; Saikh et al., 2004). One functional ex vivo study found 

primary human and mouse TLR9 surface expression in neutrophils which are 

upregulated by a variety of stimuli including TLR9 agonists (Lindau et al., 

2013). However, it remains unclear whether TLR9 can signal from the cell 
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surface. In other cell types, TLR9 is also expressed on the cell surface. For 

example, TLR9 is expressed on both the apical and basolateral membrane of 

intestinal epithelial cells although NFKB is activated only via basolateral 

stimulation of CpG ligands (Ewaschuk et al., 2007; Lee et al., 2007). This is 

relevant at the gut mucosal interphase as this limits the extent of TLR9 

activation at the apical surface, which is in contact with a luminal milieu rich 

with bacterial DNA. Hence, compromised intestinal barrier integrity and 

translocation of bacterial CpG from the lumen during gut pathology will lead to 

basolateral stimulation in this context. Whether mtDNA has a different 

propensity compared to bacterial CpG to trigger TLR9 depending on epithelial 

site has not been studied.  

 

4.4.3.2 The inflammasome 

The inflammasomes are targets of mtDNA leading to cleavage and activation 

of caspase-1 and downstream maturation of interleukin-1β (IL-1β) and IL-18 

(Gurung, Lukens and Kanneganti, 2015). Here, it is cytosolic release of mtDNA 

that exerts the dominant effect on inflammasome activation. Of the several 

inflammasomes described, the NLRP3 inflammasome is the best 

characterised in this regard. Nakahira and colleagues showed that depletion 

of mtDNA reduced IL-1β secretion in macrophages following treatment with 

known inflammasome triggers, LPS and ATP (Nakahira et al., 2011). Of 

interest, mtROS is a further key mediator in this process. Pharmacologic 

induction of mtROS correlates with higher secretion of active IL-1β in a NLRP3 

and caspase-1-dependent manner and treatment with mtROS scavengers 
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suppresses this effect (Zhou et al., 2011). The requirement for mtROS in 

NLRP3 activation has also been confirmed by other studies (Nakahira et al., 

2011; Shimada et al., 2012; Zhang et al., 2013; Won et al., 2015) and may be 

explained by its oxidising effects on mtDNA. mtROS not only enhances the 

oxidative process, but also the cytosolic translocation of oxidised mtDNA that 

then binds directly to NLRP3 (Shimada et al., 2012). Non-oxidised mtDNA is 

insufficient to activate the NLRP3 inflammasome, although it may stimulate IL-

1β production via other inflammasomes such as AIM2 (Dombrowski et al., 

2012). Interestingly, genetic deletion of NLRP3 and caspase-1 results in less 

mtDNA release (Nakahira et al., 2011; Won et al., 2015). This suggests a 

positive-feedback loop, in which activation of the NLRP3 inflammasome by 

oxidised mtDNA further promotes mtDNA release. The overwhelming and/or 

persisting ROS production by inflammatory cells, for example, is known to 

damage macromolecules (DNA, as well as RNA, lipids, carbohydrates and 

proteins) of the surrounding cells. Activated neutrophils produce large amounts 

of ROS as part of their essential role in host defence (Holmstrom and Finkel, 

2014). Hence this is a likely major contributory factor to mtDNA damage once 

the inflammatory process is triggered. 

 

Other factors controlling mitochondria-mediated NLRP3 activation are also 

relevant. For example, defective autophagy increases caspase-1 activation, 

IL-1β and IL-18 production and cytosolic mtDNA translocation in LPS and ATP 

primed macrophages (Zhang et al., 2013). Pharmacological inhibition of 

mitophagy/autophagy in human macrophages results in accumulation of 
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damaged mitochondria, ROS generation and IL-1β secretion (Zhou et al., 

2011) and increased NLRP3 expression in the presence of LPS (Ding et al., 

2014). Hence, defective autophagy leads to inadequate clearance of damaged 

mitochondria, priming the internal cellular environment for NLRP3 activation. 

It is noteworthy that given the diversity of NLRP3 activators, current literature 

suggest that the precise mechanism of NLRP3 activation is still under debate 

(Nakahira, Hisata and Choi, 2015).  Although the role of the inflammasome is 

considered separate to TLR9 here, there is evidence that TLR/NFKB activation 

is a necessary priming step leading to NLRP3 upgregulation and subsequent 

downstream signalling. NF-κB-activating stimulus is required for cells to 

express pro-IL-1β and NLRP3 (Bauernfeind et al., 2009). Imeada et al. showed 

that stimulation of TLR9 by DNA fragments during early acetaminophen-

induced cell death can lead to the transcriptional activation of the IL-1β gene 

resulting in the formation of pro-IL-1β (Imaeda et al., 2009). Using the 

acetaminophen hepatotoxicity model, they showed that NLRP3-deletion (and 

related inflammasome components ASC and Caspase-1) were protective 

against induced liver failure (Imaeda et al., 2009). A further study however, did 

not show any effect of NLRP3-deletion on the outcomes of acetaminophen-

induced liver failure (Williams et al., 2011). Hence in the context of liver 

necrosis, the role for NLRP3 inflammasome remains controversial. 

 

4.4.3.3 STING pathway 

The role of mtDNA in innate immunity through the stimulator of interferon 

genes (STING) pathway has also been a focus of recent studies. STING is a 
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cytosolic protein anchored to the ER (Ishikawa and Barber, 2008). STING can 

be activated either by direct association with double-stranded (dsDNA) or by 

cyclic dinucleotides, which can be derived from intracellular bacteria or viruses, 

or produced by a DNA sensor, cyclic GMP-AMP (cGAMP) synthetase (cGAS) 

(Barber, 2014). This in turn, activates interferon regulatory factor 3 (IRF3) 

which ultimately translocates to the nucleus and transcribes type I interferon 

(IFN) genes and also NFKB pathway (Ishikawa and Barber, 2008).  

 

Two independent groups recently discovered that STING-mediated IFN 

response can also be activated by mtDNA (Rongvaux et al., 2014; White et al., 

2014).  They first observed that deficiency of apoptotic caspases (3, 7 and 9) 

resulted in upregulation of type I IFN genes. This response was dependent on 

Bak/Bax, pro-apoptotic proteins responsible for mitochondrial outer membrane 

permeabilisation leading to mtDNA release; and the release of cytochrome C 

that activates the intrinsic apoptotic pathway. Typically, apoptosis is 

considered immunologic silent e.g. it does not trigger an inflammatory 

response. However, these studies demonstrated that when caspases (9, 3/7) 

responsible for the completion of apoptotic process are inhibited or deleted, 

cytosolic mtDNA go on to activate cGAS/STING-mediated type I IFN signalling 

(Rongvaux et al., 2014; White et al., 2014). Hence, these caspases serve as 

a ‘brake’ on mtDNA-inflammatory effect during cell death. MtDNA released 

during cell death has been previously reported to provide a second signal that 

cooperates with an additional inflammatory signal (e.g., LPS) to activate the 

NLRP3 inflammasome and induce IL-1β production in murine macrophages 

(Shimada et al., 2012). Further evidence of mtDNA role in STING-mediated 
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IFN responses comes from West et al. (West et al., 2015). Here, partial 

deficiency of mtDNA binding protein TFAM was associated with increased 

concentrations of cytosolic mtDNA and enhanced type I IFN response, which 

was attenuated by knockdown of components of the STING pathway.  

 

Aberrant mtDNA-STING signalling has been also implicated in human 

inflammatory diseases, such as SLE. As earlier discussed, Lood et al. showed 

that treatment of human neutrophils with SLE-abundant ribonucleoprotein 

immune complexes induces mtROS, mtDNA oxidisation and translocation of 

the mitochondria to the plasma membrane (Lood et al., 2016). Oxidised 

mtDNA is then released extracellularly as a component of neutrophil 

extracellular traps (NETs). Transfection of NETs-derived mtDNA results in 

expression of IFN-β in human peripheral mononuclear cells. Systemic injection 

of oxidised mtDNA increases interferon-stimulated genes expression in spleen 

of wild type, but not STING deficient mice. Similar to inflammasomes, 

uncontrolled mtROS production promoting cytosolic mtDNA release is 

important in the STING activation and potentially in the case of autoimmunity. 

These studies highlight the importance of the innate cellular functions to 

handle the mtDNA release during the initiation of cell death, which ultimately 

will decide if the ensuing fate will be that of a silent or inflammatory outcome. 
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4.4.4 Local release of mtDNA in IBD 
 

4.4.4.1 Abnormal mitochondria seen at the intestinal 
epithelial level 

Our group recently found loss of mitochondrial protective mechanisms at the 

intestinal mucosal level rendered the mitochondria susceptible to damage, and 

triggered the onset of colitis in multidrug resistant-1 (mdr1) deficient mice (Ho 

et al., 2018). Other relevant IBD mice models with primary autophagy (Irgm 

and Atg16l1)(Adolph et al., 2013; Liu et al., 2013); including those with 

secondary autophagy impairments due to defective ER-stress (Kaser et al., 

2008) and NLRP6 inflammasome activity (Elinav et al., 2011) all exhibited 

similar accumulations of damaged mitochondria within the gut epithelium as 

seen in mdr1-deficient mice. In addition, genome-wide association data sets 

show around 5% of IBD susceptibility genes have direct roles in regulating 

mitochondrial homeostasis (Ho et al., 2018). These findings implicate defective 

mitochondria as a novel pathological mechanism in IBD.  

 

In this thesis, TEM of the colon showed evidence of mitochondrial damage 

(with loss of inner cristae structure, increased lucency with swollen rounded 

appearances) in areas of cellular injury. These damaged mitochondria were 

also extravasated within sub-epithelium in affected UC. The nature of TEM did 

not allow more detailed discrimination of whether specific enterocyte or 

inflammatory cell types displayed a predilection towards mitochondrial 

damage. Further limitations of the TEM data described in this chapter include 
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the lack of blinding, and the data was observational only with no quantification 

of mitochondrial damage performed to compare UC and healthy controls. 

 

Our findings of damaged mitochondria in areas of cellular injury on TEM are in 

keeping with studies in CD which found increased mitochondrial size and 

disrupted cristae (Soderholm et al., 2002; Nazli et al., 2004). In UC, 

mitochondrial abnormalities have been found on TEM even prior to any light 

microscopic changes (Delpre et al., 1989; Hsieh et al., 2006). Reduction in the 

mitochondrial electron transport complex activity has also been found in UC, 

and mitochondrial dysfunction has been found early in the development of 

DSS colitis in mice (Santhanam et al., 2012).  

 

4.4.4.2 Higher levels of mtDNA in the faeces 

Stool testing provides a non-invasive method of intestinal assessment and has 

been used to test for inflammation (stool calprotectin) and gut microbiota (16S 

ribosomal DNA sequencing). Although not as accurate as assessment at the 

mucosal level (e.g. with endoscopy and histology), it is far more practical and 

less invasive. 

 

I hypothesised that the widespread cellular disruption at the intestinal epithelial 

level would lead to local release of DAMPs (including mitochondrial DAMPs) 

into the faeces, and that these would be detectable. I find for the first time that 

mtDNA levels are significantly elevated in the stool of patients with UC 

compared to healthy controls. Using prospectively sampled stool, significantly 
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higher mtDNA levels were found in individuals with ASUC compared to non-

IBD controls. Faecal mtDNA was significantly higher than plasma levels 

(~1000-fold) which may be explained by inherent nature of the different 

biological material.  

 

These findings are in keeping with other DAMPs that have been detected as 

raised in the faeces of patients with IBD. In addition to calprotectin, lactoferrin 

(a marker of neutrophil degranulation that acts as an alarmin) is also detectable 

in the stool and can be used to differentiate IBD from functional disorders 

(Lewis, 2011). High levels of faecal S100A12 is found in active IBD, although 

existing studies are limited by size and most relate to the paediatric cohort (De 

Jong, Leach and Day, 2006; Kaiser et al., 2007; Sidler, Leach and Day, 2008). 

Similarly, faecal HMGB1 is raised in intestinal inflammation associated with 

IBD (Vitali et al., 2011; Palone et al., 2014). 

 

Samples of stool and plasma from the same patient on the same day did not 

show a statistically significant correlation. This may be due to multiple factors. 

This was a small dataset (n=8), so the analysis may have suffered from type 

II error. Furthermore, the stool mtDNA method is novel and requires validation 

(see below).   

 

This is the first time mtDNA has been measured in stool. A widely used 

commercial kit was used to extract DNA from the stool samples (QIAamp DNA 

Stool Mini, Qiagen). A change to the protocol was made in order to reduce the 
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amount of cellular lysis (and thus minimise post processing liberation of 

DAMPs). This theory was supported with data presented showing when the 

manufacturer’s lysis buffer (ASL) was used in matched specimens, mtDNA 

levels were dramatically higher than when PBS was used. The protocol 

includes an absorption resin to help remove PCR inhibitors. Despite this, there 

is a risk that the substitution of ASL to PBS led to incomplete removal of PCR 

inhibitors from the samples. Further work needs to be performed to optimise 

mtDNA detection in the stool. 

 

4.4.4.3 Higher levels of TLR9 expression in active IBD 

mtDNA has many similarities to bacterial DNA, particularly the high frequency 

of unmethylated CpG dinucleotide repeats. Once liberated from mitochondrial 

membranes, mtDNA can induce inflammation through three main pathways: 

TLR9, inflammasome and STING (Boyapati et al., 2017) of which mtDNA-

TLR9 is best characterised. TLR9 is expressed in many immune cells including 

dendritic cells, B-cells as well as in the cytoplasm and on the apical and 

basolateral surfaces of intestinal epithelial cells (Pedersen et al., 2005). We 

hypothesised that if there was local release of mtDNA, TLR9 would be 

expressed in epithelial cells and in lamina propria immune cells. 

 

The findings presented in this chapter confirms TLR9 expression in human 

intestinal epithelial cells and in lamina propria immune cells. TLR9 was 

expressed in the cytoplasm of the epithelial cells (similarly in the surface and 

in the crypt bases). We also noted cytoplasmic TLR9 expression in the immune 
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cells in the lamina propria. Moreover, we found that TLR9+ lamina propria cells 

were significantly more abundant in gut resection specimens of active IBD 

compared to non-IBD controls.  

 

These data are in keeping with findings of strong TLR9 expression in the 

cytoplasm of epithelial cells from patients with UC compared to those from 

normal controls (Fan and Liu, 2015). This study also found TLR9 mRNA 

expression to be significantly higher in UC. However, our findings are in 

contrast to another study in which TLR9 mRNA expression was found to be 

reduced in inflamed IBD gut sections (Pedersen et al., 2005).  

 

In this thesis, we have showed that TLR9 expression is increased in IBD 

patients and that mtDNA is elevated in these patients. The data is associative 

and does not definitively show mtDNA dependent downstream function. It is 

possible that other ligands for TLR9 are raised in active IBD, leading to the 

higher expression seen. Further work should focus on demonstrating that 

mtDNA directly activates TLR9, and that this contributes to the inflammation 

associated with IBD. 
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5.1 Preamble 
 

A detailed discussion of the results are presented within each chapter 

(Sections 2.4, 3.4 and 4.4). This final chapter will discuss the overall 

implications of the thesis and focus on how future research could extend this 

exploratory work.  

 

5.2 Mitochondrial DNA as a biomarker 
 

DAMPs offer great potential as biomarkers in disease diagnosis, prediction of 

outcome, monitoring of progression and response to treatment. The role of 

calprotectin as an established IBD biomarker has been discussed, as have the 

numerous other DAMPs found in high levels in serum, faeces or at the mucosal 

level in IBD (Section 2.4.6.4, Table 2.3).  At a broader level, investigating 

whether respective IBD sub-phenotypes have specific DAMP-signatures offers 

an opportunity to stratify patients for therapy and clinical trials.  

 

MtDNA is becoming increasingly appreciated as a highly potent DAMP and 

relevant in the inflammatory cascade of human inflammatory diseases. In this 

thesis, I show for the first time that mtDNA is present at high levels in IBD, 

levels correlate with disease activity in some patient groups, and that mtDNA 

has the potential to be a novel biomarker.  
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MtDNA’s potential as a biomarker offers a unique opportunity to stratify and 

identify individuals that may benefit from specific therapeutic targeting of 

downstream inflammation pathways (e.g. TLR9, NLRP3 or STING pathways). 

As discussed earlier, there are numerous studies in sepsis, trauma and acute 

single organ injury which have already demonstrated individuals with high 

mtDNA levels and TLR9 expression have worse prognosis. Therefore, there 

are clear groups in which stratification is useful.  

 

However, several challenges exist to its implementation as a clinically useful 

biomarker as evidenced by numerous potentially promising biomarkers failing 

to be incorporated into IBD clinical practice. Further work should initially focus 

on validating mtDNA as a biomarker in different and larger cohorts, with 

prospective correlation to endoscopic and/or histologic activity as a surrogate 

for longer term outcomes. Other more fundamental issues exist such as 

variations in the method of quantification. Standardisation of these protocols, 

including identification of ‘normal’ and ‘abnormal’ ranges will be necessary.  
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5.3 Defining the effect of mtDNA in IBD 
 

The main findings presented in this thesis of raised mtDNA in the circulation of 

patients with active IBD raises numerous questions. Foremost among these is 

whether the observation of elevated mtDNA (and mitochondrial DAMPs more 

generally) contribute to, or are simply a consequence of, inflammation in IBD. 

Indeed, the finding of raised mtDNA levels is not isolated to IBD, suggesting 

that its effect is unlikely to be IBD-specific (Section 1.3.5). Furthermore, 

numerous other DAMPs have been found to be elevated in IBD and 

experimental colitis including calprotectin, S100A12 and HMGB1 (Section 

2.4.6.4) raising the question as to the relative significance of mtDNA compared 

to other DAMPs in IBD. 

 

Although extensive further research is required, there are many reasons to 

believe that mtDNA may be a highly relevant functional DAMP in IBD. There 

is an increasing understanding of the functional role of mtDNA in other 

inflammatory diseases as well as IBD-specific factors which support its 

proposed status as an active player. In this section, I discuss the evidence 

implicating mtDNA as a functional mediator in inflammatory disease in general 

and IBD specifically, and further avenues of investigation to help define its 

possible functional role in IBD.  

 

mtDNA contributes to the inflammatory response 

Collins et al., first reported the inflammatory potential of mtDNA in 2004, when 

they found that mtDNA (and not nuclear DNA) induced TNFα and caused 
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inflammatory arthritis when injected into the joints of the mice (Collins et al., 

2003). There are now numerous studies utilising in vivo injection of mtDNA to 

provoke local and/or systemic inflammation (Zhang, Itagaki and Hauser, 2010; 

Gan et al., 2015; Hu et al., 2015; Tsuji et al., 2015; Xie et al., 2017).  

 

Moreover, there are now several in vivo studies to show that genetic deletion 

or pharmacologic interference of these pathways reduce the inflammatory 

effect of mtDNA. MtDNA’s role as a TLR9 agonist has received most attention 

where many inflammatory models show better outcomes when TLR9-

signalling is abolished. Tlr9–deletion is protective against SIRS following 

systemic administration of mitochondrial DAMPs (Tsuji et al., 2015); and in 

lung (Wei et al., 2015), liver (Marques et al., 2012) and kidney (Bakker et al., 

2015) injury models characterised by high mtDNA release. Blocking TLR9 

using inhibitory ligands has been shown to improve mtDNA-driven mouse 

models of cardiac failure (Oka et al., 2012) and NASH (Garcia-Martinez et al., 

2016).  

 

Collectively, these studies support the role of mtDNA as a direct contributor to 

inflammatory disease and not simply an epiphenomenon.  

 

mtDNA-TLR9 in IBD 

The role of mtDNA-TLR9 in IBD and intestinal inflammation however, is more 

complex. TLR9 is expressed both in the intestinal epithelium and, in resident 

and recruited lamina propria immune cells. Whereas NFKB-activation is 
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prototypically pro-inflammatory (Zhang, Lenardo and Baltimore, 2017), 

intestinal epithelial NFKB-activation is cytoprotective and important to maintain 

barrier integrity (Nenci et al., 2007). Hence in tlr9-deficiency, the intestinal 

epithelium is postulated to have lower protective NFKB-activation and is more 

susceptible to injury. Along these lines, CpG oligonucleotide treatment in 

mouse studies using low dose DSS colitis showed either no difference or a 

protective role with the beneficial effects seen before the induction of colitis 

(Rachmilewitz et al., 2004; Lee et al., 2006; Rose, Sakamoto and Leifer, 2012). 

In contrast, CpG oligonucleotide treatment given during colitis worsened 

inflammation (Obermeier et al., 2005).  Similarly, our group has showed that 

tlr9-deletion was protective in 2% DSS colitis (a higher concentration than 

previously studied) with less weight loss, milder histology score and preserved 

colon length (unpublished).  

 

It is likely, therefore, that the effect of TLR9 activation is dependent on the 

stage of inflammation, severity of colitis (and thus extent of mtDNA release) 

and the cellular context of where TLR9 is blocked. In health, TLR-NFKB 

activation from PAMPs (ligands from commensal microflora) promotes 

cytoprotective factors. However, if epithelial barrier integrity is breached, or 

cytoprotective factors overwhelmed in active or severe disease, TLR9 

activation may augment colitis, potentially driven by extracellular mtDNA in 

IBD. This may help explain why a recent clinical study of a TLR9-agonist in 

moderate-to-severe UC failed to show overall clinical improvement (Atreya et 

al., 2016).  
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This area is ripe for further investigation. In active intestinal inflammation, the 

local environment is enriched with various DAMPs and microbial ligands for 

TLR9 – a key avenue of investigation will be to clarify the relative effect of 

mtDNA in this context. There should be a focus on how this varies with disease 

severity, duration and extent, and the ultimate cellular target of mtDNA (e.g. 

intestinal epithelial cells vs. lamina propria immune cells).  

 

Oxidised mtDNA and relevance to IBD 

MtDNA in disease may have higher inflammatory potential than from healthy 

controls. Two  recent  studies  in  human  disease  (NASH  and  SLE)  

demonstrate  that  equivalent  respective  mtDNA concentrations have higher 

inflammatory potential compared to mtDNA from healthy controls likely due to 

differences in oxidisation (Caielli et al., 2016; Garcia-Martinez et al., 2016).   

 

It is pertinent that the inflamed gut environment is associated with 

mitochondrial damage, which leads to increased mtROS production (Brookes, 

2004; Ho et al., 2018). MtROS potentiates the oxidisation of mtDNA, critical to 

its role as an inflammasome agonist (Shimada et al., 2012; Novak and Mollen, 

2015). Excessive mtROS also inhibits autophagy, necessary for the clearance 

of damaged mitochondria. Hence, defective autophagy (Oka et al., 2012; 

Caielli et al., 2016) as seen in IBD further influences mtDNA’s inflammatory 

capacity prior to its release.  
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Beyond simply a secondary phenomenon following uncontrolled cell death, 

recent studies in SLE show that neutrophils with impaired mitophagy can 

actively extrude mtDNA which upon oxidisation becomes a potent activator of 

plasmacytoid dendritic cells (Caielli et al., 2016). Furthermore, oxidised mtDNA 

can become bound to neutrophil extracellular traps (NET) following NETosis, 

a cell death pathway characterised by extrusion of chromatin bound to 

cytosolic and granular content, which can further enhance and maintain its 

inflammatory potential (Lood et al., 2016).   

 

Further investigation should aim to clarify several areas including a) how 

oxidisation of mtDNA differs in IBD compared to health and other inflammatory 

conditions; b) whether mtDNA associated with IBD has a higher 

proinflammatory potential; and c) the extent of NET-bound oxidised mtDNA 

and its precise effects in IBD.  

 

mtDNA release in IBD 

Uncontrolled cell death and increased necrosis of inflammatory and intestinal 

epithelial cells are necessary preceding events for mtDNA (and DAMP) 

release into the extracellular milieu, and these are hallmark features of active 

IBD (Günther et al., 2011). In this thesis, indirect evidence is presented to 

support local mtDNA release at the level of the inflamed gut in IBD. Damaged 

mitochondria were present in the colonic epithelium of active IBD compared to 

non-IBD patients on TEM. It is known that damaged and dysfunctional 

mitochondria produce increased levels of ROS, and excessive mtROS has 
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multiple effects including oxidisation of mtDNA (Brookes, 2004). Furthermore, 

faecal levels of mtDNA were significantly raised in active IBD compared to non-

IBD samples, as was TLR9 expression in colonic resection specimens. Further 

work is required to extend these associative data and interrogate the 

mechanisms behind local mtDNA release in IBD. A number of areas require 

exploration, including direct evidence of TLR9 activation by mtDNA locally; 

how the manner of cell death (e.g. necroptosis vs. necrosis) in IBD affects 

mtDNA release; the role of cytosolic mtDNA in IBD; and the contribution of 

DNases on mtDNA in the circulation. 
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5.4 mtDNA as a therapeutic target in IBD 
 

The role of DAMPs as functionally active mediators of inflammation makes this 

class a highly novel and exciting therapeutic target in IBD. This approach in 

related inflammatory diseases has already shown promise in animal models 

(Boyapati, Rossi, et al., 2016). At present, most potential DAMP therapeutics 

have yet to be studied in human clinical trials. Many challenges exist, and 

these include: understanding complex disease-specific DAMP biology with 

their diverse often competing effects; how to localize therapeutic effects to the 

site of inflammation; deciphering DAMP-PRR and DAMP-DAMP interactions; 

understanding the triggers for DAMP release; and how DAMP mediated 

signalling varies depending on context. 

 

The current evidence offers a rich ream of translational opportunities to target 

mtDNA-mediated inflammation. There are many plausible approaches which 

include targeting cytosolic mtDNA release (e.g. directly at MPT using 

cyclosporine or by specific mitochondrial anti-oxidant strategies e.g. MitoQ10 

to reduce mtROS), augmenting clearance (e.g. using autophagy activators or 

correcting factors leading to impaired autophagy), diverting the cellular 

response following mitochondrial damage (e.g. induction of pro-apoptotic 

caspases) and reducing the inflammatory potential of mtDNA (e.g. DNAses to 

digest NET-bound mtDNA and reducing oxidisation of mtDNA), augmenting 

damaged mitochondrial clearance mechanisms (e.g. mitophagy activation), 

interfering with mtDNA-TLR9 activation (using inhibitory CpG ligands) and 
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targeting downstream NFKB- and MAPK-pathways in the relevant 

inflammatory cell groups (e.g. neutrophils).  

 

Similarly, much is known about the biological effects of N-formylated peptides 

and its cognate receptors (FPR1, 2 and 3). Activation of FPR1 drives neutrophil 

chemotaxis and stimulates a variety of antimicrobial responses, including 

degranulation, ROS production and cytokine release. Both FPR1 gene-

deletion and pharmacologic inhibition are protective in inflammatory lung 

disease (Dorward et al., 2015, 2017). There are other DAMPs such as 

calprotectin (s100a8/9), HMGB1 and IL-33 with known pro-inflammatory 

mechanisms found in active IBD (Boyapati, Rossi, et al., 2016). The relative 

importance of these DAMPs is not yet clarified but offers multiple avenues of 

investigation. 

 

The aim of this thesis was not to determine whether mtDNA was a therapeutic 

target, although this question is naturally raised in the investigation of 

mechanistic biomarkers. Significant work in precisely defining mtDNA’s role in 

IBD in different conditions and on different cell types is required prior to work 

in this regard. However, once a framework is established, there is significant 

translational potential to investigate how existing novel therapies can modulate 

these pathways. If direct evidence is found suggesting blockade of 

mitochondrial DAMPs can reduce inflammation in the gut, novel therapies can 

be envisaged. These projects would require significant investment and 

partnerships from research councils or industry. 
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5.5 Model for mitochondrial dysfunction in IBD 
 

In this thesis, I have shown that mitochondrial DAMPs are released in IBD and 

correlate with disease activity. Supportive evidence suggests that release is at 

the level of cellular damage in the gut and that they may be measured as a 

novel biomarker in the circulation and stool for some patients with IBD. Given 

that many lines of evidence implicate mtDNA as a functional pro-inflammatory 

mediator, these findings have direct translational importance.  

 

The colonic epithelial mitochondria, uniquely juxtaposed with the austere 

luminal environment are particularly susceptible to damage. Overall, I propose 

a model whereby epithelial mitochondrial dysfunction in IBD leads to the 

accumulation of damaged mitochondria, increased mtROS which can either 

directly activate inflammatory signalling (e.g. through the inflammasome) or 

lead to a vicious cycle of further mitochondrial dysfunction (Figure 5.1). This 

accumulation is potentiated by defective homeostatic mechanisms such as 

autophagy. Non-apoptotic cell death can lead to release of these mitochondrial 

DAMPs into the extracellular milieu which can then activate innate 

inflammatory pathways.  
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Figure 5.1: Proposed model for contribution of mitochondria as a 

proinflammatory source in IBD 

 

More broadly, our findings open avenues to explore a new mechanistic layer 

which may further expand the current model of IBD pathogenesis to 

incorporate the ‘danger’ model. Indeed, one of the strengths of this work is the 

novelty associated with addressing this relatively unexplored area in IBD. 

Hence DAMPs as ‘enemies within’, may represent a potential major player in 

addition to established data implicating genetic susceptibility, and exogenous 

microbial and environmental factors in the pathogenesis of IBD.  
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Appendix A – Clinical disease activity indices in IBD 
 

Variable Variable Description 

General well-being Score 0 = very well 

Score 1 = slightly below par 

Score 2 = poor 

Score 3 = very poor 

Score 4 = terrible 

Abdominal pain Score 0 = none 

Score 1 = mild 

Score 2 = moderate 

Score 3 = severe 

Number of liquid stools / day Score 1 point for each liquid stool 

Abdominal mass Score 0 = none 

Score 1 = dubious 

Score 2 = definite 

Score 3 = definite and tender 

Complications (Score 1 point each manifestation) 

Arthralgia 

Uveitis 

Erythema nodosum 

Aphthous ulcers 

Pyoderma gangrenosum 

Anal fissure 

New fistula 

abscess 

Remission < 5; mild disease 5-7; moderate disease 8-16; severe disease > 16 

Table A1: Harvey Bradshaw Index (HBI) for clinical assessment of disease 

activity in CD 
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Variable Variable Description 

Bowel frequency (day) Score 0 = 0-3 

Score 1 = 4-6 

Score 2 = 7-9 

Score 3 = >9 

Bowel frequency (night) Score 0 = 0 

Score 1 = 1-3 

Score 2 = 4-6 

Urgency of defecation Score 0 = None 

Score 1 = Hurry 

Score 2 = Immediately 

Score 3 = Incontinence 

Blood in stool Score 0 = None 

Score 1 = Trace 

Score 2 = Occasionally frank 

Score 3 = Usually frank 

General well-being Score 0 = Very well 

Score 1 = Slightly below par 

Score 2 = Poor 

Score 3 = Very poor 

Score 4 = Terrible 

Extracolonic features (Score 1 per manifestation) 

Arthritis 

Uveitis 

Erythema nodosum 

Pyoderma gangrenosum 

Remission <=2, clinical activity > 2 

Table A2: Simple Clinical Colitis Activity Index (SCCAI) for clinical assessment 

of disease activity in UC 
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Bloody diarrhoea ≥ 6 bloody stools per day 

and at least one of:  

Temperature > 37.8 degrees Celsius 

Pulse rate > 90 beats per minute 

Haemoglobin < 105 g/L 

ESR > 30 mm/h 

 

Table A3: Modified Truelove & Witts’ criteria for diagnosis of ASUC 
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Appendix B – Patient Questionnaire 
 

Patient Questionnaire 

To be completed by research clinician  

Patient ID      Date of completion 

   

 

Gender                 M / F        please circle  

Ethnic origin 

1. Which of the following best describes your ethnic origin? 

White European  

Jewish   Ashkenazi    Sephardic    

South Asian    (Bangladesh/India/Pakistan) 

South East Asian  

Hispanic  

Afro-Caribbean  

African American  

Pacific Islander    Native Hawaiian       

Native American    Native Alaskan         

Other     Please specify  

Mixed     Please specify 

   

Country of birth 

2. Where were you born (town and country)? 

..………………………......................................... 

3. Where did you spend the majority of your childhood (town and 

country)? …………………. 

4. Was this location  Urban / Rural ?    please circle 
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5. Where were your biological parents born (town and country)? 

Mother …………………………………….        

Father………………………………………. 

 

Social History and Environmental factors 

Education 

6. Number of years of education at recruitment (primary, secondary and 

further education).  

 

Smoking 

7. Do you currently smoke every day?      

(If no skip to Q 10) 

    Yes 

    No 

8. If yes, what do you smoke? 

    Cigarettes 

    Cigars 

    Pipe 

    Roll-ups 

9. How many do you smoke per day? 

   

10. If you only smoke socially, how many do you smoke per month?  

(If no skip to Q 12) 

   

11. When did you start smoking? (Year) 
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Have you ever smoked?    Yes (If no skip to Q 17) 

     No 

   

12. If yes, what did you smoke?   Cigarettes 

    Cigars 

    Pipe 

    Roll-ups 

13. When did you start smoking? (Year) 

     

14.  When did you stop smoking? (Year) 

   

15. How many did you smoke per day? 

   

16. Does your partner smoke? 

    Yes 

    No 

17. Did anyone smoke in the house while you were growing up? 

 

    Yes 

    No 

18. Smoking status at diagnosis of IBD 

    Smoker 

    Non-smoker 

    Ex-smoker 

    Unsure 
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Alcohol 

19. Do you consume alcohol?               Yes 

   Never 

   

If yes, how often?  Most days       Once or 

twice a week 

   At weekends only      

Once or twice a month 

   Once or twice a year   

   

20. If yes, how many drinks per day?    

    0-1    

    2-3 

    More than 3  

21. If more than 3, how many usually? …………………………………….. 

22. What do you usually drink?   Beer   Cider 

 Wine  Spirits    

Childhood exposure 

23.  Did you have a pet in the house as a child?   

 Yes     No  …………..…………………… ……… 

(type of pet) 

24.  Did you receive all your recommended vaccinations? 

  Yes     No    Unsure 

25. Did you require frequent antibiotics as a child? 

  Yes     No    Unsure 

26. If yes, what were these mainly required for? 

………………………………………….. 

27. Were there any concerns over poor growth in childhood?          

Or delayed puberty?     

Please ask if you have any queries about any of the 

questions above. 
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The following sections should be completed with the aid of a 

doctor or nurse. 

Family and Medical History 

28. In total, how many biological brothers and sisters do you have?   

29. How many biological children do you have?     

30. Is there a family history of IBD?  

  Yes     No (skip to Q.32) 

 Unknown Crohn’s 

Disease 

Ulcerative 

Colitis 

IBD (unclear 

type) 

Age at 

diagnosis  

Father      

Mother      

Siblings   number  number  number  

Children   number  number  number  

 

Are any other 

relations 

affected? – 

please specify 

below and also 

whether 

maternal or 

paternal. 

 

Unknown 

 

Crohn’s 

disease 

 

Ulcerative 

Colitis 

 

IBD 

(unclear 

type) 

 

Age at 

diagnosis  

      

      

      
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31. Have you or anyone in your family had any of the following conditions? 

 Personal History Family History (if yes, please 

specify relation) 

Multiple Sclerosis   No     Yes   No     Yes   Relation 

Psoriasis   No     Yes   No     Yes   Relation 

Coeliac Disease   No     Yes   No     Yes   Relation 

Ankylosing 

Spondylitis 

  No     Yes   No     Yes   Relation 

 

Colorectal Cancer 

  No     Yes 

Age at diagnosis 

  No     Yes   Relation 

Age at diagnosis 

Any Cancer 

 

Please specify 

  No     Yes   No     Yes   Relation 

Other Immune 

Disorders 

 

Please specify 

  

 

32. Do you have any other medical problems? (Please list below) 
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Present Diagnosis 

  Crohn’s disease   Ulcerative Colitis   IBD unspecified    Unknown  

33. When did your symptoms start (month and year)  

 ………………………… 

34. What symptoms did you have? (Tick all that apply) 

 growth failure    diarrhoea   blood in stool    abdominal pain   

 fatigue/tiredness 

 fistula/abscess  nausea  vomiting  none  other 

If “none” please specify the clinical history that led to diagnosis of IBD. 

………………………………………………………………………………………… 

If “other” please specify what other symptoms you had. 

………………………………………………………………………………………… 

35. Have you lost any weight since the onset of your symptoms? 

  Yes   No 

36. If yes, how much?        …………....................... 

37. When were you diagnosed (month and year)?   ………………………… 

38. What was your weight at diagnosis?  ………………       

and your height?  ……...……… 

39. How many times have you been admitted to hospital for your IBD (other than 

for planned   investigations)?   

 ………………………………………………………………………………… 

40. Have you had any operations for your IBD?  No  Yes (Please list below) 

 
Operation 

 
Year 
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41. Do you currently have an   

 ileoanal pouch  ileostomy   colostomy ? 

42. Have you had your tonsils removed?    

If yes, what year?  ………………………….. 

43. Have you had your appendix removed?  

If yes, what year?  …………………………… 

44. Have you had any abdominal surgery other than for IBD? Please specify 

below. 

 

 

Medications 

Medication Treated with Tolerated On now 

Oral 5-ASA    

Rectal 5-ASA    

Sulphasalazine    

Oral steroid    

Rectal steroid    

Azathioprine    

6-Mercaptopurine    

Methotrexate    

Ciclosporin    

Infliximab    

Adalimumab    

Certolizumab    

Natalizumab    

Antibiotics for IBD    

Elemental diet    

 

Other IBD therapies?...................................................................................... 
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45. Oral contraceptive status    Current   Never  Ex 

46. Have you taken any NSAIDS ( eg.ibuprofen, diclofenac, naproxen) in the last  

6 months? 

       Yes    No 

47. If yes, how often?      Seldom          

Frequently   

48. Have you taken any aspirin in the last 6 months?   Yes               No 

49. If yes, how often?     Seldom        Frequently 

50. Have you taken any paracetamol in the last 6 months?   Yes        No 

51. If yes, how often?     Seldom        Frequently 

52. What was your usual diet during the 6 months to a year prior to diagnosis? 

 Mixed meat/fish/veg  No red meat  Vegetarian  Vegan

  Pescetarian  Gluten free  Dairy free    Lactose free 

 Diabetic  High fibre       Low residue     Low FODMAP 

 Other, please specify 

……………………………………………………………………….  

 

Pregnancy 

53. Have you been pregnant since you were diagnosed with IBD? 

  Yes    No 

 

 

End of questionnaire 
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Appendix C – Clinical Activity Form 
  

  Sample Collection       Clinic Assessment (please tick) 

To be completed by research clinician 

Patient 
ID 

 Date of 
sample/clinic 

 Temp / Pulse  

Current weight 
(kg) 

 Usual weight (kg)  Unwanted weight 
loss(kg) 

 

Time to weight 
loss(months) 

 Height (metres)  BMI  

Fasting state   fasted   non-fasted 
 

Type of bowel prep   

List all current meds including non-IBD drugs. Please 
note doses and duration of treatment especially 
steroids. 

Any recently 
stopped? 

When? 

   

Have you had any courses of antibiotics in the last 6 months?(Please specify - what for, 
which antibiotic(s), when taken and how long for) 
 

 
Smoking status  never  current, cigs =   ex, stop date = 

SCCAI / HBI 

Please describe the following for the day and night prior to taking bowel prep 
(or previous day if none taken). 

 
General well-being    Very well     Slightly below par     Poor     Very poor     
Terrible 

Bowel frequency during day            no of formed stools =                   no of liquid stools = 

Bowel frequency during night         no of formed stools =                   no of liquid stools = 

Description of bowel movements 

 
Urgency of defecation       None      Hurry      Immediate      Incontinence 

 
Blood in stool        None      Trace      Occasionally frank      Usually frank 

 
Abdominal pain           None      Mild       Moderate      Severe 

 
Abdominal mass            None      Possible   Definite       Tender 

 
EIMS         Arthralgia     Uveitis     Erythema Nodosum   Pyoderma Gangrenosum 
 
                  Anal fissure  New fistula    Abscess     Aphthous ulcers 
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Current 
diet 

 
 Mixed meat/fish/veg    No red meat     Vegetarian  Vegan 
 
 Pescetarian  Gluten free  Dairy free  Lactose free 
 
 Diabetic  High fibre  Low residue  Low FODMAP 
  
 Polymeric diet  Elemental diet  Clear fluid diet 
 
 TPN   IV fluids only  Other –please specify below 
 …………………………………… 
 

 
 
 
 
 

Alcohol 

Do you consume alcohol? 
 
 Yes   Never 
 
 Most days  At weekends  only     Once or twice a week 
 
 Once or twice a month      Once or twice a year 
    
How many drinks per day? 
 
 0-1  2-3  More than 3  If more than 3, how many? 
……………………… 
 
What do you usually drink? 
 
 Beer   Cider           Wine       Spirits 
 
Notes 
………………………………………………………………………………… 
 

 
Clinician’s assessment of patient’s health status :  
0 is worst, 10 is best (perfect health) 
 
Please circle one number below 
 
0 1 2 3 4 5 6 7 8 9 10 

 
Each recruiting centre should specify the units used locally for each test below 

Blood test Date Result Stool test Date Result 

Haemoglobin   Calprotectin   

WCC   Stool culture   

Neutrophils   Please specify 
pathogenic 

bacteria 
identified 

 

Lymphocytes   

Platelets   

ESR   C.diff toxin   

Albumin   CMV(specify test 
below) 

  

CRP      
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Appendix D – Primer sequences used for quantification of mtDNA by qPCR 
 

Name Forward Reverse Ref 

Cytochrome C oxidase subunit III (COXIII) 5’-ATGACCCACCAATCACATGC-3’ 5’-ATCACATGGCTAGGCCGGAG-3’ (Zhang et al., 

2010) 

NADH-dehydrogenase 2 (ND2) 5’- CACAGAAGCTGCCATCAAGTA-3’ 5’- CCGGAGAGTATATTGTTGAAGAG-3’ (Lu et al., 2010) 

Table A4: Primer sequences used for quantification of mtDNA by qPCR 
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Appendix E – N-terminal hexapeptide sequences 
of mitochondrial formylated peptides* 
 

Formylated peptide N terminus Uniprot number  

NADH 1 Formyl-MPMANL P03886  

NADH 2 Formyl-MNPLAQ P03891  

NADH 3 Formyl-MNFALI P03897 

NADH 4L Formyl-MPLIYM P03901 

NADH 4 Formyl-MLKLIV P03905 

NADH 5 Formyl-MTMHTT P03915 

NADH 6 Formyl-MMYALF P03923 

COX I Formyl-MFADRW P00395 

COX II Formyl-MAHAAQ P00403 

COX III Formyl-MTHQSH P00414 

Cytochrome b Formyl-MTPMRK P00156 

ATP synthase subunit 6 Formyl-MNENLF P00846 

ATP synthase subunit 8 Formyl-MPQLNT P03928 

 

*As described in (Rabiet, Huet and Boulay, 2005) 

Table A5: N-terminal hexapeptide sequences of mitochondrial formylated 

peptides.  
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Appendix F – Mayo endoscopic classification of 
UC severity 
 

Mayo Score Description Detailed description 

0 Normal No friability or granularity 
Intact vascular pattern 

1 Mildly active Erythema 
Decreased vascular pattern 
Mild friability 

2 Moderately active Marked erythema 
Absent vascular pattern 
Friability 
Erosions 

3 Severely active Marked erythema 
Absent vascular markings 
Granularity 
Friability 
Spontaneous bleeding 
Ulcerations 

Table A6: Mayo endoscopic classification of UC severity (Schroeder, 

Tremaine and Ilstrup, 1987) 
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