51 research outputs found

    RASC-AL Theme 2 artificial gravity reusable crewed deep space transport: Final technical report

    Get PDF
    Project Daedalus is OSU's submitted design for the NASA RASCAL Theme 2 competition. Our objective is to develop a vehicle which is capable of simulating Mars' gravity for a majority of a mission to and from Mars, last 1100 days, and launch from cis-lunar orbit. This report goes over out design in detail and the obstacles faced during the design process

    RASC-AL final review

    Get PDF
    As part of the quest for humankind to reach Mars, the problem of astronaut health on extended space voyages must be addressed. The team at Oklahoma State University aims to solve one major element of that challenge extended micro-gravity exposure. As outlined in RASC-AL Theme 2, there is a need to create artificial gravity in a reusable crewed deep space transport for the manned missions to Mars. The Oklahoma State University team (Team Daedalus) proposes to create the artificial gravity that will simulate that of Mars' gravity for the majority of the mission through the use of centripetal force. Team Daedalus' design will utilize a baseline habitat and a storage pod counterweight connected via a shaft that will rotate around a central hub attached to the propulsion system. This rotation will simulate the necessary gravity for astronaut health and comfort during the mission

    A User's Guide to the Encyclopedia of DNA Elements (ENCODE)

    Get PDF
    The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome

    A User's Guide to the Encyclopedia of DNA Elements (ENCODE)

    Get PDF
    The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome

    The Simons Observatory: Galactic Science Goals and Forecasts

    Get PDF
    Observing in six frequency bands from 27 to 280 GHz over a large sky area, the Simons Observatory (SO) is poised to address many questions in Galactic astrophysics in addition to its principal cosmological goals. In this work, we provide quantitative forecasts on astrophysical parameters of interest for a range of Galactic science cases. We find that SO can: constrain the frequency spectrum of polarized dust emission at a level of Δβd0.01\Delta\beta_d \lesssim 0.01 and thus test models of dust composition that predict that βd\beta_d in polarization differs from that measured in total intensity; measure the correlation coefficient between polarized dust and synchrotron emission with a factor of two greater precision than current constraints; exclude the non-existence of exo-Oort clouds at roughly 2.9σ\sigma if the true fraction is similar to the detection rate of giant planets; map more than 850 molecular clouds with at least 50 independent polarization measurements at 1 pc resolution; detect or place upper limits on the polarization fractions of CO(2-1) emission and anomalous microwave emission at the 0.1% level in select regions; and measure the correlation coefficient between optical starlight polarization and microwave polarized dust emission in 11^\circ patches for all lines of sight with NH2×1020N_{\rm H} \gtrsim 2\times10^{20} cm2^{-2}. The goals and forecasts outlined here provide a roadmap for other microwave polarization experiments to expand their scientific scope via Milky Way astrophysics.Comment: Submitted to AAS journals. 33 pages, 10 figure

    An integrated encyclopedia of DNA elements in the human genome

    Get PDF
    The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research

    Role of Wnt canonical pathway in hematological malignancies

    Get PDF
    Wnt canonical signaling pathway plays a diverse role in embryonic development and maintenance of organs and tissues in adults. It has been observed that Wnt/β-catenin signaling pathway is involved in the pathogenesis of many carcinomas. Moreover, Wnt/β-catenin pathway has been revealed to be associated with angiogenesis. Wnt canonical pathway signaling has great potential as a therapeutic target. It has been disclosed that some hematological malignancies, such as chronic lymphocytic leukemia, mantle cell lymphoma, may occur partly due to the constitutive activation of Wnt canonical signaling pathway. This review will summarize the latest development in Wnt canonical signaling pathway and its roles in tumorigenesis and angiogenesis
    corecore