7 research outputs found

    Study of light yield for different configurations of plastic scintillators and wavelength shifting fibers

    No full text
    International audienceIn the effort of the AugerPrime scintillator surface detector R&D; activity, we investigated the performances of different extruded and cast plastic scintillators that were read out with wavelength-shifting (WLS) optical fibers and then coupled to a PMT. In particular we compared the light yield of eighteen scintillator/fiber configurations, obtained combining eight different scintillator bars with six fiber types, in order to investigate which was satisfying the AugerPrime specifications in terms of light production ( >12 photoelectrons per minimum ionizing particle). In this paper, we present the results of the study on different scintillator bar geometries, scintillator production techniques, and wavelength-shifting optical fiber types. We also propose an effective way to optically couple the fibers to the PMT entrance window

    Transient SOX9 expression facilitates resistance to androgen-targeted therapy in prostate cancer

    No full text
    Purpose: Patients with metastatic prostate cancer are increasingly presenting with treatment-resistant, androgen receptor-negative/ low (AR /Low) tumors, with or without neuroendocrine characteristics, in processes attributed to tumor cell plasticity. This plasticity has been modeled by Rb1/p53 knockdown/knockout and is accompanied by overexpression of the pluripotency factor, Sox2. Here, we explore the role of the developmental transcription factor Sox9 in the process of prostate cancer therapy response and tumor progression. Experimental Design: Unique prostate cancer cell models that capture AR. / Low stem cell-like intermediates were analyzed for features of plasticity and the functional role of Sox9. Human prostate cancer xenografts and tissue microarrays were evaluated for temporal alterations in Sox9 expression. The role of NF-kB pathway activity in Sox9 overexpression was explored. Results: Prostate cancer stem cell-like intermediates have reduced Rb1 and p53 protein expression and overexpress Sox2 as well as Sox9. Sox9 was required for spheroid growth, and overexpression increased invasiveness and neural features of prostate cancer cells. Sox9 was transiently upregulated in castration-induced progression of prostate cancer xenografts and was specifically overexpressed in neoadjuvant hormone therapy (NHT)-treated patient tumors. High Sox9 expression in NHT-treated patients predicts biochemical recurrence. Finally, we link Sox9 induction to NF-kB dimer activation in prostate cancer cells. Conclusions: Developmentally reprogrammed prostate cancer cell models recapitulate features of clinically advanced prostate tumors, including downregulated Rb1/p53 and overexpression of Sox2 with Sox9. Sox9 is a marker of a transitional state that identifies prostate cancer cells under the stress of therapeutic assault and facilitates progression to therapy resistance. Its expression may index the relative activity of the NF-kB pathway.</p

    Casein kinase 1Δ and 1α as novel players in polycystic kidney disease and mechanistic targets for (R)-roscovitine and (S)-CR8

    No full text
    Following the discovery of (R)-roscovitine's beneficial effects in three polycystic kidney disease (PKD) mouse models, cyclin-dependent kinases (CDKs) inhibitors have been investigated as potential treatments. We have used various affinity chromatography approaches to identify the molecular targets of roscovitine and its more potent analog (S)-CR8 in human and murine polycystic kidneys. These methods revealed casein kinases 1 (CK1) as additional targets of the two drugs. CK1 epsilon expression at the mRNA and protein levels is enhanced in polycystic kidneys of 11 different PKD mouse models as well as in human polycystic kidneys. A shift in the pattern of CK1 alpha isoforms is observed in all PKD mouse models. Furthermore, the catalytic activities of both CK1 epsilon and CK1 alpha are increased in mouse polycystic kidneys. Inhibition of CK1 epsilon and CK1 alpha may thus contribute to the long-lasting attenuating effects of roscovitine and (S)-CR8 on cyst development. CDKs and CK1s may constitute a dual therapeutic target to develop kinase inhibitory PKD drug candidates

    Therapy-induced developmental reprogramming of prostate cancer cells and acquired therapy resistance

    No full text
    Treatment-induced neuroendocrine transdifferentiation (NEtD) complicates therapies for metastatic prostate cancer (PCa). Based on evidence that PCa cells can transdifferentiate to other neuroectodermally-derived cell lineages in vitro, we proposed that NEtD requires first an intermediary reprogramming to metastable cancer stem-like cells (CSCs) of a neural class and we demonstrate that several different AR+/PSA+ PCa cell lines were efficiently reprogrammed to, maintained and propagated as CSCs by growth in androgen-free neural/neural crest (N/NC) stem medium. Such reprogrammed cells lost features of prostate differentiation; gained features of N/NC stem cells and tumor-initiating potential; were resistant to androgen signaling inhibition; and acquired an invasive phenotype in vitro and in vivo. When placed back into serum-containing mediums, reprogrammed cells could be re-differentiated to N-/NC-derived cell lineages or return back to an AR+ prostate-like state. Once returned, the AR+ cells were resistant to androgen signaling inhibition. Acute androgen deprivation or anti-androgen treatment in serum-containing medium led to the transient appearance of a sub-population of cells with similar characteristics. Finally, a 132 gene signature derived from reprogrammed PCa cell lines distinguished tumors from PCa patients with adverse outcomes. This model may explain neural manifestations of PCa associated with lethal disease. The metastable nature of the reprogrammed stem-like PCa cells suggests that cycles of PCa cell reprogramming followed by re-differentiation may support disease progression and therapeutic resistance. The ability of a gene signature from reprogrammed PCa cells to identify tumors from patients with metastasis or PCa-specific mortality implies that developmental reprogramming is linked to aggressive tumor behaviors
    corecore