13 research outputs found
Bioengineered microfluidic blood-brain barrier models in oncology research
Metastasis is the major reason for most brain tumors with up to a 50% chance of occurrence in patients with other types of malignancies. Brain metastasis occurs if cancer cells succeed to cross the ?blood-brain barrier? (BBB). Moreover, changes in the structure and function of BBB can lead to the onset and progression of diseases including neurological disorders and brain-metastases. Generating BBB models with structural and functional features of intact BBB is highly important to better understand the molecular mechanism of such ailments and finding novel therapeutic agents targeting them. Hence, researchers are developing novel in vitro BBB platforms that can recapitulate the structural and functional characteristics of BBB. Brain endothelial cells-based in vitro BBB models have thus been developed to investigate the mechanism of brain metastasis through BBB and facilitate the testing of brain targeted anticancer drugs. Bioengineered constructs integrated with microfluidic platforms are vital tools for recapitulating the features of BBB in vitro closely as possible. In this review, we outline the fundamentals of BBB biology, recent developments in the microfluidic BBB platforms, and provide a concise discussion of diverse types of bioengineered BBB models with an emphasis on the application of them in brain metastasis and cancer research in general. We also provide insights into the challenges and prospects of the current bioengineered microfluidic platforms in cancer research.Scopu
Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. Methods: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. Findings: The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. Interpretation: Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. Funding: Bill & Melinda Gates Foundation
Not Available
Not AvailableGelatin, a commercially important polypeptide derived from collagen has wide applications in food and pharmaceutical industry. Gelatin extracted from the tropical fish species has an advantage over cold water species, the former having better rheological properties. In this study the physic-chemical properties of gelatin extracted from the skin of rohu, Labeo rohita and yellowfin tuna Thunnus. albacare were studied. The results indicated that tuna skin gelatin was superior in terms of yield, gel strength, viscosity and foam stability. However, rohu skin gelatin had a better colour and foam formation ability. The amino acid composition showed significantly higher content of glycine (27.5%) and imino acid (26.98%) in tuna skin gelatin. Although tuna gelatin had better gel strength, rohu skin gelatin was found to be more suitable for food applications
as it had better colour and sensory properties.Not Availabl
Progress in the Synthesis of Bifunctionalized Polyhedral Oligomeric Silsesquioxane
Polyhedral oligomeric silsesquioxane (POSS) has been considered as one of the most promising nanofillers in academic and industrial research due to its unique multifunctional nanostructure, easy functionalization, hybrid nature, and high processability. The progress of POSS has been extensive, particularly applications based on single- or multiple-armed POSS. In polymer hybrids, in order to enhance the properties, bifunctional POSS has been incorporated into the backbone chain of the polymer. This review summarizes recent developments in the synthesis, modification, and application of bifunctional POSS-containing composite materials. This includes amino-POSS, hydroxyl-POSS, aromatic ring-POSS, ether-POSS, and vinyl groups-POSS and their applications, exemplified by polyurethanes (PUs) and polyimides (PIs). In addition, the review highlights the enhancement of thermal, mechanical, and optical properties of the composites
Self-Assembly and Applications of Amphiphilic Hybrid POSS Copolymers
Understanding the mechanism of molecular self-assembly to form well-organized nanostructures is essential in the field of supramolecular chemistry. Particularly, amphiphilic copolymers incorporated with polyhedral oligomeric silsesquioxanes (POSSs) have been one of the most promising materials in material science, engineering, and biomedical fields. In this review, new ideas and research works which have been carried out over the last several years in this relatively new area with a main focus on their mechanism in self-assembly and applications are discussed. In addition, insights into the unique role of POSSs in synthesis, microphase separation, and confined size were encompassed. Finally, perspectives and challenges related to the further advancement of POSS-based amphiphilics are discussed, followed by the proposed design considerations to address the challenges that we may face in the future
Hydrogels: Smart Materials in Drug Delivery
The prominence of hydrogels in various fields of life sciences is due to their significant and functional three-dimensional biopolymeric networks, which tend to imbibe water due to -OH, -CONH2, -SO3H, -CONH,-COOR groups which have a hydrophilic tendency enabling them to be an excellent super absorbent and remain insoluble in water. Hydrogels can embed physiologically active molecules in their water-swollen network and are appealing materials for the controlled release of medicines. Several significant advancements in the realm of hydrogels for therapeutic delivery have resulted from recent advances in organic and polymer chemistry, bioengineering, and nanotechnology. We offer our perspective on the state-of-the-art in the field in this chapter, focusing on several intriguing issues such as current trends in hydrogel-based drug delivery, stimuli-responsive hydrogels, nanogels, and therapeutic release from 3D printed hydrogels. We also discuss the obstacles that must be solved to promote translation from academia to the clinic, as well as our predictions for the future of this quickly changing field of research
Not Available
Not AvailableIn India, pangasius (Pangasianodon hypophthalmus) farming is gaining importance among the farmers due to its fast growth and better survival rate. In the present study, restructured products were prepared from pangasius mince in four different formulations by using pangasius fish mince, corn starch (4%) and chitosan (0.75%). Formulation containing only corn starch (4%) served as control. Shelf life of the products was evaluated under chilled (2ºC) condition up to 17 days. Biochemical quality parameters viz., total volatile base nitrogen (TVB-N), free fatty acid (FFA) and peroxide value (PV), thiobarbituric acid (TBA) value were within acceptable limits in chitosan treated samples. Control sample was acceptable only upto 6 days compare to 12 days in chitosan treated samples.Not Availabl
NiFe2O4/poly(ethylene glycol)/lipid-polymer hybrid nanoparticles for anti-cancer drug delivery
The present study reports the fabrication of hybrid nanoparticles consisting of nickel ferrite (NFO) for anti cancer drug delivery. The hybrid system was formulated from poly(vinyl alcohol)/stearic acid with PEG containing nickel ferrite for zidovudine (AZT) delivery. The nickel ferrite nanoparticles were characterized by XRD and TEM analysis. The hybrid nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM), and their influence on biological systems was evaluated by blood compatibility and cell viability studies. The encapsulation of AZT into the hybrid nanoparticles was assessed by evaluating the drug loading, encapsulation efficiency and release studies. The advantages of incorporating magnetic nanoparticles into self-assembled hybrid nanoparticles include the ability to load large amounts of drugs along with control over drug release. In this regard, the presented nickel ferrite reinforced hybrid nanoparticles containing zidovudine is a demanding platform that can act in a pH responsive manner enabling site specific intracellular anticancer drug delivery. Its impact is therefore noteworthy, extensive, and prevalent in cancer therapy.Scopu
Cisplatin encapsulated nanoparticles from polymer blends for anti-cancer drug delivery
Developing novel nanocarriers for anticancer drug delivery has become a ‘promising niche’. The toxicity of the carrier and its efficacy in treatment modalities have become cardinal points as they can impede the progress of the therapy. In this study, a drug delivery system composed of a blend of polymers coated with a lipid, which is able to release cisplatin efficiently, was contrived. Here, cisplatin was encapsulated inside thermo-responsive dextran/gelatine blend nanocarriers coated with a lipid-PEG shell. The cisplatin encapsulated nanoparticles had a cube-like structure with a mean diameter of 210.25 ± 31.58 nm. The developed drug delivery system has showed a drug loading capacity of more than 90% and exhibited pH-responsive release of cisplatin. Moreover, the desirable features of the nanoparticles include biodegradability, biocompatibility, and blood compatibility. The potency of the drug delivery system was tested against breast cancer cells (MDA-MB 231), which provided excellent results establishing the vigour of cisplatin-loaded nanoparticles in human breast cancer interventions. Furthermore, imperceptible systemic toxicity and side effects and its anti-tumor effects make cisplatin-loaded nanoparticles predominate as an eminent tool in cancer therapy