186 research outputs found

    Following in the Wake of Anger: When Not Discriminating Is Discriminating

    Get PDF
    Does seeing a scowling face change your impression of the next person you see? Does this depend on the race of the two people? Across four studies, White participants evaluated neutrally expressive White males as less threatening when they followed angry (relative to neutral) White faces; Black males were not judged as less threatening following angry Black faces. This lack of threat-anchored contrast for Black male faces is not attributable to a general tendency for White targets to homogenize Black males—neutral Black targets following smiling Black faces were contrasted away from them and seen as less friendly—and emerged only for perceivers low in motivation to respond without prejudice (i.e., for those relatively comfortable responding prejudicially). This research provides novel evidence for the overperception of threat in Black males

    Informing wetland management with waterfowl movement and sanctuary use responses to human-induced disturbance

    Get PDF
    Long-term environmental management to prevent waterfowl population declines is informed by ecology, movement behavior and habitat use patterns. Extrinsic factors, such as human-induced disturbance, can cause behavioral changes which may influence movement and resource needs, driving variation that affects management efficacy. To better understand the relationship between human-based disturbance and animal movement and habitat use, and their potential effects on management, we GPS tracked 15 dabbling ducks in California over ~4-weeks before, during and after the start of a recreational hunting season in October/November 2018. We recorded locations at 2-min intervals across three separate 24-h tracking phases: Phase 1) two weeks before the start of the hunting season (control (undisturbed) movement); Phase 2) the hunting season opening weekend; and Phase 3) a hunting weekend two weeks after opening weekend. We used GLMM models to analyze variation in movement and habitat use under hunting pressure compared with ‘normal’ observed patterns prior to commencement of hunting. We also compared responses to differing levels of disturbance related to the time of day (high - shooting/~daytime); moderate - non-lethal (~crepuscular); and low - night). During opening weekend flight (% time and distance) more than doubled during moderate and low disturbance and increased by ~50% during high disturbance compared with the pre-season weekend. Sanctuary use tripled during moderate and low disturbance and increased ~50% during high disturbance. Two weeks later flight decreased in all disturbance levels but was only less than the pre-season levels during high disturbance. In contrast, sanctuary use only decreased at night, although not to pre-season levels, while daytime doubled from ~45% to \u3e80%. Birds adjust rapidly to disturbance and our results have implications for energetics models that estimate population food requirements. Management would benefit from reassessing the juxtaposition of essential sanctuary and feeding habitats to optimize wetland management for waterfowl

    I only have eyes for you: Ovulation redirects attention (but not memory) to attractive men

    Get PDF
    A number of studies have found a disjunction between women’s attention to, and memory for, handsome men. Although women pay initial attention to handsome men, they do not remember those men later. The present study examines how ovulation might differentially affect these attentional and memory processes. We found that women near ovulation increased their visual attention to attractive men. However, this increased visual attention did not translate into better memory. Discussion focuses on possible explanations, in the context of an emerging body of findings on disjunctions between attention to, and memory for, other people.National Institute of Mental Health (U.S.) (R01MH064734

    Good prospects: high-resolution telemetry data suggests novel brood site selection behaviour in waterfowl

    Get PDF
    Breeding success should increase with prior knowledge of the surrounding environment, which is dependent upon an animal\u27s ability to evaluate habitat. Prospecting for nesting locations and migratory stopover sites are well-established behaviours among bird species. We assessed whether three species of California dabbling ducks – mallards, Anas platyrhynchos, gadwall, Mareca strepera, and cinnamon teal, Spatula cyanoptera – in Suisun Marsh, California, U.S.A., a brackish marsh, prospect for suitable wetlands in the week prior to brooding. K-means cluster analyses grouped 29 mallard and gadwall hens into three groups. One group (N = 13) demonstrated evidence of brood site prospecting, with the fewest and latest prebrooding wetland visits. Of these hens, seven visited their future brood pond an average of 1.14 times and only shortly before brooding (1.29 days), obtaining current information on habitat suitability. For the remaining six hens, we did not detect a brooding wetland visit, possibly due to data limitations or because these hens acquired sufficient familiarity with the wetland habitat during nest breaks in adjacent wetlands, obviating the need to prospect the specific brood pond. The second identified group of hens (N = 11) visited the brooding wetland most frequently (on 4.55 days), further in advance (5.27 days), with the fewest unique wetland visits and the earliest brooding date (26 May). The final group of hens (N = 5) were the latest to brood (21 June) and visited the most wetlands, possibly due to less water or more broods present across the landscape. Brood ponds were always farther from the nest than the nearest ponds, indicating that habitat suitability or presence of conspecifics is more important to brood site selection. Prospecting provides hens with knowledge about current habitat conditions and allows them to ‘crowdsource’ public information regarding use of that habitat by other brooding hens. Prospecting may, therefore, benefit ducks inhabiting ephemeral habitats like those within Suisun Marsh, where brood habitat is limited and water cover changes rapidly during the breeding season

    Foraging in marine habitats increases mercury concentrations in a generalist seabird

    Get PDF
    Methylmercury concentrations vary widely across geographic space and among habitat types, with marine and aquatic-feeding organisms typically exhibiting higher mercury concentrations than terrestrial-feeding organisms. However, there are few model organisms to directly compare mercury concentrations as a result of foraging in marine, estuarine, or terrestrial food webs. The ecological impacts of differential foraging may be especially important for generalist species that exhibit high plasticity in foraging habitats, locations, or diet. Here, we investigate whether foraging habitat, sex, or fidelity to a foraging area impact blood mercury concentrations in western gulls (Larus occidentalis) from three colonies on the US west coast. Cluster analyses showed that nearly 70% of western gulls foraged primarily in ocean or coastal habitats, whereas the remaining gulls foraged in terrestrial and freshwater habitats. Gulls that foraged in ocean or coastal habitats for half or more of their foraging locations had 55% higher mercury concentrations than gulls that forage in freshwater and terrestrial habitats. Ocean-foraging gulls also had lower fidelity to a specific foraging area than freshwater and terrestrial-foraging gulls, but fidelity and sex were unrelated to gull blood mercury concentrations in all models. These findings support existing research that has described elevated mercury levels in species using aquatic habitats. Our analyses also demonstrate that gulls can be used to detect differences in contaminant exposure over broad geographic scales and across coarse habitat types, a factor that may influence gull health and persistence of other populations that forage across the land-sea gradient

    Waterfowl recently infected with low pathogenic avian influenza exhibit reduced local movement and delayed migration

    Get PDF
    Understanding relationships between infection and wildlife movement patterns is important for predicting pathogen spread, especially for multispecies pathogens and those that can spread to humans and domestic animals, such as avian influenza viruses (AIVs). Although infection with low pathogenic AIVs is generally considered asymptomatic in wild birds, prior work has shown that influenza-infected birds occasionally delay migration and/or reduce local movements relative to their uninfected counterparts. However, most observational research to date has focused on a few species in northern Europe; given that influenza viruses are widespread globally and outbreaks of highly pathogenic strains are increasingly common, it is important to explore influenza–movement relationships across more species and regions. Here, we used telemetry data to investigate relationships between influenza infection and movement behavior in 165 individuals from four species of North American waterfowl that overwinter in California, USA. We studied both large-scale migratory and local overwintering movements and found that relationships between influenza infection and movement patterns varied among species. Northern pintails (Anas acuta) with antibodies to avian influenza, indicating prior infection, made migratory stopovers that averaged 12 days longer than those with no influenza antibodies. In contrast, greater white-fronted geese (Anser albifrons) with antibodies to avian influenza made migratory stopovers that averaged 15 days shorter than those with no antibodies. Canvasbacks (Aythya valisineria) that were actively infected with influenza upon capture in the winter delayed spring migration by an average of 28 days relative to birds that were uninfected at the time of capture. At the local scale, northern pintails and canvasbacks that were actively infected with influenza used areas that were 7.6 and 4.9 times smaller than those of uninfected ducks, respectively, during the period of presumed active influenza infection. We found no evidence for an influence of active influenza infection on local movements of mallards (Anas platyrhynchos). These results suggest that avian influenza can influence waterfowl movements and illustrate that the relationships between avian influenza infection and wild bird movements are context- and species-dependent. More generally, understanding and predicting the spread of multihost pathogens requires studying multiple taxa across space and time

    Pathways for avian influenza virus spread: GPS reveals wild waterfowl in commercial livestock facilities and connectivity with the natural wetland landscape

    Get PDF
    Zoonotic diseases are of considerable concern to the human population and viruses such as avian influenza (AIV) threaten food security, wildlife conservation and human health. Wild waterfowl and the natural wetlands they use are known AIV reservoirs, with birds capable of virus transmission to domestic poultry populations. While infection risk models have linked migration routes and AIV outbreaks, there is a limited understanding of wild waterfowl presence on commercial livestock facilities, and movement patterns linked to natural wetlands. We documented 11 wild waterfowl (three Anatidae species) in or near eight commercial livestock facilities in Washington and California with GPS telemetry data. Wild ducks used dairy and beef cattle feed lots and facility retention ponds during both day and night suggesting use for roosting and foraging. Two individuals (single locations) were observed inside poultry facility boundaries while using nearby wetlands. Ducks demonstrated high site fidelity, returning to the same areas of habitats (at livestock facilities and nearby wetlands), across months or years, showed strong connectivity with surrounding wetlands, and arrived from wetlands up to 1251 km away in the week prior. Telemetry data provides substantial advantages over observational data, allowing assessment of individual movement behaviour and wetland connectivity that has significant implications for outbreak management. Telemetry improves our understanding of risk factors for waterfowl–livestock virus transmission and helps identify factors associated with coincident space use at the wild waterfowl–domestic livestock interface. Our research suggests that even relatively small or isolated natural and artificial water or food sources in/near facilities increases the likelihood of attracting waterfowl, which has important consequences for managers attempting to minimize or prevent AIV outbreaks. Use and interpretation of telemetry data, especially in near-real-time, could provide key information for reducing virus transmission risk between waterfowl and livestock, improving protective barriers between wild and domestic species, and abating outbreaks

    Signal Detection on the Battlefield: Priming Self-Protection vs. Revenge-Mindedness Differentially Modulates the Detection of Enemies and Allies

    Get PDF
    Detecting signs that someone is a member of a hostile outgroup can depend on very subtle cues. How do ecology-relevant motivational states affect such detections? This research investigated the detection of briefly-presented enemy (versus friend) insignias after participants were primed to be self-protective or revenge-minded. Despite being told to ignore the objectively nondiagnostic cues of ethnicity (Arab vs. Western/European), gender, and facial expressions of the targets, both priming manipulations enhanced biases to see Arab males as enemies. They also reduced the ability to detect ingroup enemies, even when these faces displayed angry expressions. These motivations had very different effects on accuracy, however, with self-protection enhancing overall accuracy and revenge-mindedness reducing it. These methods demonstrate the importance of considering how signal detection tasks that occur in motivationally-charged environments depart from results obtained in conventionally motivationally-inert laboratory settings.National Institute of Mental Health (U.S.) (Grant MH64734)U.S. Army Research Institute for the Behavioral and Social Sciences (Grant W74V8H-05-K-0003)National Science Foundation (U.S.) (Grant BCS-0642873
    • …
    corecore