24 research outputs found

    Using Multiple Sources of Knowledge to Investigate Northern Environmental Change: Regional Ecological Impacts of a Storm Surge in the Outer Mackenzie Delta, N.W.T.

    Get PDF
    Field data, remote sensing, and Inuvialuit knowledge were synthesized to document regional ecological change in the outer Mackenzie Delta and to explore the timing, causes, and implications of this phenomenon. In September 1999, a large magnitude storm surge inundated low-lying areas of the outer Mackenzie Delta. The storm was among the most intense on record and resulted in the highest water levels ever measured at the delta front. Synthesis of scientific and Inuvialuit knowledge indicates that flooding during the 1999 storm surge increased soil salinity and caused widespread vegetation death. Vegetation cover was significantly reduced in areas affected by the surge and was inversely related to soil salinity. Change detection analysis, using remotely sensed imagery bracketing the 1999 storm event, indicates severe impacts on at least 13 200 ha of terrestrial vegetation in the outer delta. Inuvialuit knowledge identifying the 1999 surge as anomalous is corroborated by geochemical profiles of permafrost and by a recently published paleo-environmental study, which indicates that storm surge impacts of this magnitude have not previously occurred during the last millennium. Almost a decade after the 1999 storm surge event, ecological recovery has been minimal. This broad-scale vegetation change is likely to have significant implications for wildlife and must be considered in regional ecosystem planning and in the assessment and monitoring of the cumulative impacts of development. Our investigations show that Inuvialuit were aware of the 1999 storm surge and the environmental impacts several years before the scientific and regulatory communities recognized their significance. This study highlights the need for multidisciplinary and locally informed approaches to identifying and understanding Arctic environmental change.La synthĂšse des donnĂ©es d’exploitation et de tĂ©lĂ©dĂ©tection de mĂȘme que des connaissances des Inuvialuit a Ă©tĂ© effectuĂ©e afin de rĂ©pertorier les changements Ă©cologiques enregistrĂ©s dans la rĂ©gion extĂ©rieure du delta du Mackenzie et d’explorer la temporisation, les causes et les incidences de ce phĂ©nomĂšne. En septembre 1999, une onde de tempĂȘte de grande magnitude a inondĂ© les zones de faible Ă©lĂ©vation de l’extĂ©rieur du delta du Mackenzie. Il s’agit de la tempĂȘte la plus intense Ă  n’avoir jamais Ă©tĂ© enregistrĂ©e, ce qui s’est traduit par les niveaux d’eau les plus Ă©levĂ©s Ă  n’avoir jamais Ă©tĂ© mesurĂ©s Ă  la hauteur du delta. La synthĂšse des donnĂ©es scientifiques et des connaissances des Inuvialuit nous montre que l’inondation de 1999 a eu pour effet d’augmenter la salinitĂ© du sol et a entraĂźnĂ© la mort de la vĂ©gĂ©tation Ă  grande Ă©chelle. La couverture vĂ©gĂ©tale a Ă©tĂ© rĂ©duite considĂ©rablement dans les zones visĂ©es par l’onde et Ă©tait inversement reliĂ©e Ă  la salinitĂ© du sol. L’analyse des dĂ©tections de changement effectuĂ©e au moyen de l’imagerie tĂ©lĂ©dĂ©tectĂ©e dans le cas de la tempĂȘte de 1999 laisse entrevoir de fortes incidences sur au moins 13 200 hectares de vĂ©gĂ©tation terrestre dans l’extĂ©rieur du delta. Les connaissances des Inuvialuit, qui affirment que l’onde de 1999 Ă©tait anormale, sont corroborĂ©es par les profils gĂ©ochimiques du pergĂ©lisol ainsi que par une Ă©tude palĂ©oenvironnementale qui indique que des incidences de cette ampleur dĂ©coulant d’une onde de tempĂȘte ne se sont pas produites Ă  un autre moment donnĂ© du dernier millĂ©naire. PrĂšs d’une dĂ©cennie aprĂšs l’onde de tempĂȘte de 1999, le rĂ©tablissement Ă©cologique Ă©tait minime. Ce changement de vĂ©gĂ©tation Ă  grande Ă©chelle aura vraisemblablement d’importantes incidences sur la faune et doit entrer en considĂ©ration dans la planification de l’écosystĂšme rĂ©gional ainsi que dans l’évaluation et la surveillance des incidences cumulatives des travaux d’amĂ©nagement et de mise en valeur. Nos enquĂȘtes nous ont permis de constater que les Inuvialuit Ă©taient conscients des incidences environnementales de l’onde de tempĂȘte de 1999 plusieurs annĂ©es avant que les scientifiques et le personnel s’occupant de la rĂ©glementation ne reconnaissent leur importance. Cette Ă©tude fait ressortir la nĂ©cessitĂ© d’avoir des mĂ©thodes multidisciplinaires et de faire appel aux gens de la rĂ©gion pour dĂ©terminer et comprendre les changements environnementaux dans l’Arctique

    Broad-scale lake expansion and flooding inundates essential wood bison habitat

    Get PDF
    Understanding the interaction between the response of a complex ecosystem to climate change and the protection of vulnerable wildlife species is essential for conservation efforts. In the Northwest Territories (Canada), the recent movement of the Mackenzie wood bison herd (Bison bison athabascae) out of their designated territory has been postulated as a response to the loss of essential habitat following regional lake expansion. We show that the proportion of this landscape occupied by water doubled since 1986 and the timing of lake expansion corresponds to bison movements out of the Mackenzie Bison Sanctuary. Historical reconstructions using proxy data in dated sediment cores show that the scale of recent lake expansion is unmatched over at least the last several hundred years. We conclude that recent lake expansion represents a fundamental alteration of the structure and function of this ecosystem and its use by Mackenzie wood bison, in response to climate change

    The impact of Ca-rich diamond mining effluent on downstream cladoceran communities in softwater lakes of the Northwest Territories, Canada

    No full text
    Effluent from diamond mining operations rich in calcium (Ca) has transformed softwater tundra lakes in the Northwest Territories, Canada. Lakes downstream of the Dominion Diamond Corporation Ekati Mine have experienced marked changes in water chemistry and cladoceran community composition since establishment of the mine in 1998. The greatest changes have occurred at the sites closest to the effluent discharge, with [Ca] increasing fromThe accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Paleolimnology of thermokarst lakes: a window into permafrost landscape evolution

    No full text
    Widespread across northern permafrost landscapes, thermokarst ponds and lakes provide vital wildlife habitat and play a key role in biogeochemical processes. Stored in the sediments of these typically shallow and dynamic waterbodies are rich sources of paleoenvironmental information whose potential has not yet been fully exploited, likely because of concerns over stratigraphic preservation and challenges to develop reliable sediment core chronologies. Here, we present an overview of recently-derived informative paleolimnological reconstructions based on multi-parameter analysis of sediment archives from permafrost aquatic basins. We include examples from across the Canadian North, Alaska, and Siberia that illustrate their value for providing insights into temporal patterns of lake inception, catchment erosion, aquatic productivity, hydrological evolution, and landscape disturbances. Although not captured in our survey, emerging research directions focused on carbon accumulation, storage, and balance hold much promise for contributing to global climate change science

    Limnology and diatom ecology of shallow lakes in a rapidly thawing discontinuous permafrost peatland

    No full text
    Lakes in discontinuous permafrost peatlands are on the front lines of climate change, sensitive to even modest increases in air temperature. The aim of this study was to provide the first limnological characterization of shallow (∌1-2 m depth) lakes in the Scotty Creek basin (Northwest Territories, Canada), a field site of circumpolar significance due to the existence of long-term ecohydrological monitoring going back decades. We use this as a foundation from which to advance our process-based understanding of the potential drivers of lake ecosystem change. Our results showed that dissolved organic carbon (DOC) and lake color were not correlated, a pattern that appears to be an important driver of diatom (siliceous single-celled algae) assemblages in these lakes. Diatoms in the study lakes tended to fall into one of two assemblage clusters. One cluster, comprised of small benthic Fragilariaceae and small Navicula species (sensu lato), was found associated with higher lake color. The second cluster, comprised of Encyonopsis and large Navicula species, was found associated with high DOC, lower color, and the presence of a benthic moss mat. From this, we suggest that DOC quality is a primary control on lake ecology in this region for its role in controlling light penetration to the lake bottom. We hypothesized that the prevalence of nearshore fens and collapse scar wetlands would be important drivers of DOC, but this was not supported in the 9 study lakes for which we had available data to map shoreline features.</p

    Paleolimnology of thermokarst lakes: a window into permafrost landscape evolution

    No full text
    Widespread across northern permafrost landscapes, thermokarst ponds and lakes provide vital wildlife habitat and play a key role in biogeochemical processes. Stored in the sediments of these typically shallow and dynamic waterbodies are rich sources of paleoenvironmental information whose potential has not yet been fully exploited, likely because of concerns over stratigraphic preservation and challenges to develop reliable sediment core chronologies. Here, we present an overview of recently-derived informative paleolimnological reconstructions based on multi-parameter analysis of sediment archives from permafrost aquatic basins. We include examples from across the Canadian North, Alaska, and Siberia that illustrate their value for providing insights into temporal patterns of lake inception, catchment erosion, aquatic productivity, hydrological evolution, and landscape disturbances. Although not captured in our survey, emerging research directions focused on carbon accumulation, storage, and balance hold much promise for contributing to global climate change science.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Exploratory Hydrocarbon Drilling Impacts to Arctic Lake Ecosystems

    No full text
    <div><p>Recent attention regarding the impacts of oil and gas development and exploitation has focused on the unintentional release of hydrocarbons into the environment, whilst the potential negative effects of other possible avenues of environmental contamination are less well documented. In the hydrocarbon-rich and ecologically sensitive Mackenzie Delta region (NT, Canada), saline wastes associated with hydrocarbon exploration have typically been disposed of in drilling sumps (i.e., large pits excavated into the permafrost) that were believed to be a permanent containment solution. However, failure of permafrost as a waste containment medium may cause impacts to lakes in this sensitive environment. Here, we examine the effects of degrading drilling sumps on water quality by combining paleolimnological approaches with the analysis of an extensive present-day water chemistry dataset. This dataset includes lakes believed to have been impacted by saline drilling fluids leaching from drilling sumps, lakes with no visible disturbances, and lakes impacted by significant, naturally occurring permafrost thaw in the form of retrogressive thaw slumps. We show that lakes impacted by compromised drilling sumps have significantly elevated lakewater conductivity levels compared to control sites. Chloride levels are particularly elevated in sump-impacted lakes relative to all other lakes included in the survey. Paleolimnological analyses showed that invertebrate assemblages appear to have responded to the leaching of drilling wastes by a discernible increase in a taxon known to be tolerant of elevated conductivity coincident with the timing of sump construction. This suggests construction and abandonment techniques at, or soon after, sump establishment may result in impacts to downstream aquatic ecosystems. With hydrocarbon development in the north predicted to expand in the coming decades, the use of sumps must be examined in light of the threat of accelerated permafrost thaw, and the potential for these industrial wastes to impact sensitive Arctic ecosystems.</p></div
    corecore