420 research outputs found

    Structures and Reactivity Patterns of Group 9 Metallocorroles

    Get PDF
    Group 9 metallocorroles 1-M(PPh_3) and 1-M(py)_2 [M = Co(III), Rh(III), Ir(III); 1 denotes the trianion of 5,10,15-tris-pentafluorophenylcorrole] have been fully characterized by structural, spectroscopic, and electrochemical methods. Crystal structure analyses reveal that average metal−N(pyrrole) bond lengths of the bis-pyridine metal(III) complexes increase from Co (1.886 Å) to Rh (1.957 Å)/Ir (1.963 Å); and the average metal−N(pyridine) bond lengths also increase from Co (1.995 Å) to Rh (2.065 Å)/Ir (2.059 Å). Ligand affinities for 1-M(PPh_3) axial coordination sites increase dramatically in the order 1-Co(PPh_3) < 1-Rh(PPh_3) < 1-Ir(PPh_3). There is a surprising invariance in the M(+/0) reduction potentials within the five- and six-coordinate corrole series, and even between them; the average M(+/0) potential of 1-M(PPh_3) is 0.78 V vs Ag/AgCl in CH_2Cl_2 solution, whereas that of 1-M(py)_2 is 0.70 V under the same conditions. Electronic structures of one-electron-oxidized 1-M(py)_2 complexes have been assigned by analysis of electron paramagnetic resonance spectroscopic measurements: oxidation is corrole-centered for 1-Co(py)_2 (g = 2.008) and 1-Rh(py)_2 (g = 2.003), and metal-centered for 1-Ir(tma)_2 (g_(zz) = 2.489, g_(yy) = 2.010, g_(xx) = 1.884, g_(av) = 2.128) and 1-Ir(py)_2 (g_(zz) = 2.401, g_(yy) = 2.000, g_(xx) = 1.937, g_(av) = 2.113)

    Stable Fermion Bag Solitons in the Massive Gross-Neveu Model: Inverse Scattering Analysis

    Full text link
    Formation of fermion bag solitons is an important paradigm in the theory of hadron structure. We study this phenomenon non-perturbatively in the 1+1 dimensional Massive Gross-Neveu model, in the large NN limit. We find, applying inverse scattering techniques, that the extremal static bag configurations are reflectionless, as in the massless Gross-Neveu model. This adds to existing results of variational calculations, which used reflectionless bag profiles as trial configurations. Only reflectionless trial configurations which support a single pair of charge-conjugate bound states of the associated Dirac equation were used in those calculations, whereas the results in the present paper hold for bag configurations which support an arbitrary number of such pairs. We compute the masses of these multi-bound state solitons, and prove that only bag configurations which bear a single pair of bound states are stable. Each one of these configurations gives rise to an O(2N) antisymmetric tensor multiplet of soliton states, as in the massless Gross-Neveu model.Comment: 10 pages, revtex, no figures; v2: typos corrected, references added; v3: version accepted for publication in the PRD. referencess added. Some minor clarifications added at the beginning of section

    Electrophysiological Signatures of Spatial Boundaries in the Human Subiculum.

    Get PDF
    Environmental boundaries play a crucial role in spatial navigation and memory across a wide range of distantly related species. In rodents, boundary representations have been identified at the single-cell level in the subiculum and entorhinal cortex of the hippocampal formation. Although studies of hippocampal function and spatial behavior suggest that similar representations might exist in humans, boundary-related neural activity has not been identified electrophysiologically in humans until now. To address this gap in the literature, we analyzed intracranial recordings from the hippocampal formation of surgical epilepsy patients (of both sexes) while they performed a virtual spatial navigation task and compared the power in three frequency bands (1-4, 4-10, and 30-90 Hz) for target locations near and far from the environmental boundaries. Our results suggest that encoding locations near boundaries elicited stronger theta oscillations than for target locations near the center of the environment and that this difference cannot be explained by variables such as trial length, speed, movement, or performance. These findings provide direct evidence of boundary-dependent neural activity localized in humans to the subiculum, the homolog of the hippocampal subregion in which most boundary cells are found in rodents, and indicate that this system can represent attended locations that rather than the position of one\u27s own body

    Developmental Transcriptomic Analysis of the Cave-Dwelling Crustacean, Asellus aquaticus

    Get PDF
    Cave animals are a fascinating group of species often demonstrating characteristics including reduced eyes and pigmentation, metabolic efficiency, and enhanced sensory systems. Asellus aquaticus, an isopod crustacean, is an emerging model for cave biology. Cave and surface forms of this species differ in many characteristics, including eye size, pigmentation, and antennal length. Existing resources for this species include a linkage map, mapped regions responsible for eye and pigmentation traits, sequenced adult transcriptomes, and comparative embryological descriptions of the surface and cave forms. Our ultimate goal is to identify genes and mutations responsible for the differences between the cave and surface forms. To advance this goal, we decided to use a transcriptomic approach. Because many of these changes first appear during embryonic development, we sequenced embryonic transcriptomes of cave, surface, and hybrid individuals at the stage when eyes and pigment become evident in the surface form. We generated a cave, a surface, a hybrid, and an integrated transcriptome to identify differentially expressed genes in the cave and surface forms. Additionally, we identified genes with allele-specific expression in hybrid individuals. These embryonic transcriptomes are an important resource to assist in our ultimate goal of determining the genetic underpinnings of the divergence between the cave and surface forms

    Testing the Radio-Selection Method of Dual Active Galactic Nuclei in the Stripe 82 Field

    Full text link
    We test the merger-induced dual active galactic nuclei (dAGN) paradigm using a sample of 35 radio galaxy pairs from the SDSS Stripe 82 field. Using Keck optical spectroscopy, we confirm 21 pairs have consistent redshifts, constituting kinematic pairs; the remaining 14 pairs are line-of-sight projections. We classify the optical spectral signatures via emission line ratios, equivalent widths, and excess of radio power above star-formation predicted outputs. We find 6 galaxies are classified as LINERs and 7 are AGN/starburst composites. Most of the LINERs are retired galaxies, while the composites likely have AGN contribution. All of the kinematic pairs exhibit radio power more than 10×\times above the level expected from just star-formation, suggestive of a radio AGN contribution. We also analyze high-resolution (0.3") imaging at 6 GHz from the NSF's Karl G. Jansky Very Large Array for 17 of the kinematic pairs. We find 6 pairs (2 new, 4 previously known) host two separate radio cores, confirming their status as dAGNs. The remaining 11 pairs contain single AGNs, with most exhibiting prominent jets/lobes overlapping their companion. Our final census indicates a dAGN duty cycle slightly higher than predictions of purely stochastic fueling, although a larger sample (potentially culled from VLASS) is needed to fully address the dAGN fraction. We conclude that while dAGNs in the Stripe 82 field are rare, the merger process plays some role in their triggering and it facilitates low to moderate levels of accretion.Comment: 26 pages, 10 figures, resubmitted to ApJ after addressing referee report, supplemental figures/data to be included in online journa

    Antipredatory Escape Behaviors of Two Benthic Ctenophores in South Florida

    Get PDF
    Benthic ctenophores, members of the family Coeloplanidae (Order Platyctenida, Phylum Ctenophora) are more widespread and abundant in tropical and subtropical marine environments than formerly recognized. Coeloplanid ctenophores are members of the most speciose family of benthic ctenophores, with 33 recognized species of Coeloplana and one species of the genus Vallicula (Mills 1998). The majority of coeloplanids are ectosymbionts of algae and diverse benthic invertebrates (Matsumoto 1999, Alamaru et al. 2015). Hundreds to thousands of individuals can occupy preferred habitats in \u3c 1 m2 of substrate patches. Galt (1998) noted Vallicula multiformis inhabiting algae in Hawaii at population densities as high as 10,000 individuals m−2. Also, in South Florida Glynn et al. (2017) observed 100s of individuals of V. multiformis inhabiting macroalgae, and 1,000 to 1,500 individuals of Coeloplana waltoni on octocoral stems

    On Kinks and Bound States in the Gross-Neveu Model

    Full text link
    We investigate static space dependent \sigx=\lag\bar\psi\psi\rag saddle point configurations in the two dimensional Gross-Neveu model in the large N limit. We solve the saddle point condition for \sigx explicitly by employing supersymmetric quantum mechanics and using simple properties of the diagonal resolvent of one dimensional Schr\"odinger operators rather than inverse scattering techniques. The resulting solutions in the sector of unbroken supersymmetry are the Callan-Coleman-Gross-Zee kink configurations. We thus provide a direct and clean construction of these kinks. In the sector of broken supersymmetry we derive the DHN saddle point configurations. Our method of finding such non-trivial static configurations may be applied also in other two dimensional field theories.Comment: Revised version. A new section added with derivation of the DHN static configurations in the sector of broken supersymmetry. Some references added as well. 25 pp, latex, e-mail [email protected]

    Dynamical Generation of Extended Objects in a 1+11+1 Dimensional Chiral Field Theory: Non-Perturbative Dirac Operator Resolvent Analysis

    Get PDF
    We analyze the 1+11+1 dimensional Nambu-Jona-Lasinio model non-perturbatively. In addition to its simple ground state saddle points, the effective action of this model has a rich collection of non-trivial saddle points in which the composite fields \sigx=\lag\bar\psi\psi\rag and \pix=\lag\bar\psi i\gam_5\psi\rag form static space dependent configurations because of non-trivial dynamics. These configurations may be viewed as one dimensional chiral bags that trap the original fermions (``quarks") into stable extended entities (``hadrons"). We provide explicit expressions for the profiles of these objects and calculate their masses. Our analysis of these saddle points is based on an explicit representation we find for the diagonal resolvent of the Dirac operator in a \{\sigx, \pix\} background which produces a prescribed number of bound states. We analyse in detail the cases of a single as well as two bound states. We find that bags that trap NN fermions are the most stable ones, because they release all the fermion rest mass as binding energy and become massless. Our explicit construction of the diagonal resolvent is based on elementary Sturm-Liouville theory and simple dimensional analysis and does not depend on the large NN approximation. These facts make it, in our view, simpler and more direct than the calculations previously done by Shei, using the inverse scattering method following Dashen, Hasslacher, and Neveu. Our method of finding such non-trivial static configurations may be applied to other 1+11+1 dimensional field theories
    • …
    corecore