131 research outputs found

    Propiconazole Is a Specific and Accessible Brassinosteroid (BR) Biosynthesis Inhibitor for Arabidopsis and Maize

    Get PDF
    Brassinosteroids (BRs) are steroidal hormones that play pivotal roles during plant development. In addition to the characterization of BR deficient mutants, specific BR biosynthesis inhibitors played an essential role in the elucidation of BR function in plants. However, high costs and limited availability of common BR biosynthetic inhibitors constrain their key advantage as a species-independent tool to investigate BR function. We studied propiconazole (Pcz) as an alternative to the BR inhibitor brassinazole (Brz). Arabidopsis seedlings treated with Pcz phenocopied BR biosynthetic mutants. The steady state mRNA levels of BR, but not gibberellic acid (GA), regulated genes increased proportional to the concentrations of Pcz. Moreover, root inhibition and Pcz-induced expression of BR biosynthetic genes were rescued by 24epi-brassinolide, but not by GA3 co-applications. Maize seedlings treated with Pcz showed impaired mesocotyl, coleoptile, and true leaf elongation. Interestingly, the genetic background strongly impacted the tissue specific sensitivity towards Pcz. Based on these findings we conclude that Pcz is a potent and specific inhibitor of BR biosynthesis and an alternative to Brz. The reduced cost and increased availability of Pcz, compared to Brz, opens new possibilities to study BR function in larger crop species

    Stochastic steps in secondary active sugar transport.

    Get PDF
    Secondary active transporters, such as those that adopt the leucine-transporter fold, are found in all domains of life, and they have the unique capability of harnessing the energy stored in ion gradients to accumulate small molecules essential for life as well as expel toxic and harmful compounds. How these proteins couple ion binding and transport to the concomitant flow of substrates is a fundamental structural and biophysical question that is beginning to be answered at the atomistic level with the advent of high-resolution structures of transporters in different structural states. Nonetheless, the dynamic character of the transporters, such as ion/substrate binding order and how binding triggers conformational change, is not revealed from static structures, yet it is critical to understanding their function. Here, we report a series of molecular simulations carried out on the sugar transporter vSGLT that lend insight into how substrate and ions are released from the inward-facing state of the transporter. Our simulations reveal that the order of release is stochastic. Functional experiments were designed to test this prediction on the human homolog, hSGLT1, and we also found that cytoplasmic release is not ordered, but we confirmed that substrate and ion binding from the extracellular space is ordered. Our findings unify conflicting published results concerning cytoplasmic release of ions and substrate and hint at the possibility that other transporters in the superfamily may lack coordination between ions and substrate in the inward-facing state

    CXCL12 Mediates Trophic Interactions between Endothelial and Tumor Cells in Glioblastoma

    Get PDF
    Emerging evidence suggests endothelial cells (EC) play a critical role in promoting Glioblastoma multiforme (GBM) cell proliferation and resistance to therapy. The molecular basis for GBM-EC interactions is incompletely understood. We hypothesized that the chemokine CXCL12 and its receptor CXCR4 could mediate direct interactions between GBM cells and tumor-associated endothelial cells and that disruption of this interaction might be the molecular basis for the anti-tumor effects of CXCR4 antagonists. We investigated this possibility in vivo and in an in vitro co-culture model that incorporated extracellular matrix, primary human brain microvascular ECs (HBMECs) and either an established GBM cell line or primary GBM specimens. Depletion of CXCR4 in U87 GBM cells blocked their growth as intracranial xenografts indicating that tumor cell CXCR4 is required for tumor growth in vivo. In vitro, co-culture of either U87 cells or primary GBM cells with HBMECs resulted in their co-localization and enhanced GBM cell growth. Genetic manipulation of CXCL12 expression and pharmacological inhibition of its receptors CXCR4 and CXCR7 revealed that the localizing and trophic effects of endothelial cells on GBM cells were dependent upon CXCL12 and CXCR4. These findings indicate that the CXCL12/CXCR4 pathway directly mediates endothelial cell trophic function in GBMs and that inhibition of CXCL12-CXCR4 signaling may uniquely target this activity. Therapeutic disruption of endothelial cell trophic functions could complement the structural disruption of anti-angiogenic regimens and, in combination, might also improve the efficacy of radiation and chemotherapy in treating GBMs

    The Distinct Metabolic Phenotype of Lung Squamous Cell Carcinoma Defines Selective Vulnerability to Glycolytic Inhibition

    Get PDF
    Adenocarcinoma (ADC) and squamous cell carcinoma (SqCC) are the two predominant subtypes of non-small cell lung cancer (NSCLC) and are distinct in their histological, molecular and clinical presentation. However, metabolic signatures specific to individual NSCLC subtypes remain unknown. Here, we perform an integrative analysis of human NSCLC tumour samples, patient-derived xenografts, murine model of NSCLC, NSCLC cell lines and The Cancer Genome Atlas (TCGA) and reveal a markedly elevated expression of the GLUT1 glucose transporter in lung SqCC, which augments glucose uptake and glycolytic flux. We show that a critical reliance on glycolysis renders lung SqCC vulnerable to glycolytic inhibition, while lung ADC exhibits significant glucose independence. Clinically, elevated GLUT1-mediated glycolysis in lung SqCC strongly correlates with high 18F-FDG uptake and poor prognosis. This previously undescribed metabolic heterogeneity of NSCLC subtypes implicates significant potential for the development of diagnostic, prognostic and targeted therapeutic strategies for lung SqCC, a cancer for which existing therapeutic options are clinically insufficient

    Sex-specific mating pheromones in the nematode Panagrellus redivivus

    Get PDF
    Nematodes use an extensive chemical language based on glycosides of the dideoxysugar ascarylose for developmental regulation (dauer formation), male sex attraction, aggregation, and dispersal. However, no examples of a female- or hermaphrodite-specific sex attractant have been identified to date. In this study, we investigated the pheromone system of the gonochoristic sour paste nematode Panagrellus redivivus, which produces sex-specific attractants of the opposite sex. Activity-guided fractionation of the P. redivivus exometabolome revealed that males are strongly attracted to ascr#1 (also known as daumone), an ascaroside previously identified from Caenorhabditis elegans hermaphrodites. Female P. redivivus are repelled by high concentrations of ascr#1 but are specifically attracted to a previously unknown ascaroside that we named dhas#18, a dihydroxy derivative of the known ascr#18 and an ascaroside that features extensive functionalization of the lipid-derived side chain. Targeted profiling of the P. redivivus exometabolome revealed several additional ascarosides that did not induce strong chemotaxis. We show that P. redivivus females, but not males, produce the male-attracting ascr#1, whereas males, but not females, produce the female-attracting dhas#18. These results show that ascaroside biosynthesis in P. redivivus is highly sex-specific. Furthermore, the extensive side chain functionalization in dhas#18, which is reminiscent of polyketide-derived natural products, indicates unanticipated biosynthetic capabilities in nematodes

    mTOR Controls Ovarian Follicle Growth by Regulating Granulosa Cell Proliferation

    Get PDF
    We have shown that inhibition of mTOR in granulosa cells and ovarian follicles results in compromised granulosa proliferation and reduced follicle growth. Further analysis here using spontaneously immortalized rat granulosa cells has revealed that mTOR pathway activity is enhanced during M-phase of the cell cycle. mTOR specific phosphorylation of p70S6 kinase and 4E-BP, and expression of Raptor are all enhanced during M-phase. The predominant effect of mTOR inhibition by the specific inhibitor Rapamycin (RAP) was a dose-responsive arrest in the G1 cell cycle stage. The fraction of granulosa cells that continued to divide in the presence of RAP exhibited a dose-dependent increase in aberrant mitotic figures known as anaphase bridges. Strikingly, estradiol consistently decreased the incidence of aberrant mitotic figures. In mice treated with RAP, the mitotic index was reduced compared to controls, and a similar increase in aberrant mitotic events was noted. RAP injected during a superovulation regime resulted in a dose-dependent reduction in the numbers of eggs ovulated. Implications for the real-time regulation of follicle growth and dominance, including the consequences of increased numbers of aneuploid granulosa cells, are discussed

    An Evolutionarily Conserved Enhancer Regulates Bmp4 Expression in Developing Incisor and Limb Bud

    Get PDF
    To elucidate the transcriptional regulation of Bmp4 expression during organogenesis, we used phylogenetic footprinting and transgenic reporter analyses to identify Bmp4 cis-regulatory modules (CRMs). These analyses identified a regulatory region located ∼46 kb upstream of the mouse Bmp4 transcription start site that had previously been shown to direct expression in lateral plate mesoderm. We refined this regulatory region to a 396-bp minimal enhancer, and show that it recapitulates features of endogenous Bmp4 expression in developing mandibular arch ectoderm and incisor epithelium during the initiation-stage of tooth development. In addition, this enhancer directs expression in the apical ectodermal ridge (AER) of the developing limb and in anterior and posterior limb mesenchyme. Transcript profiling of E11.5 mouse incisor dental lamina, together with protein binding microarray (PBM) analyses, allowed identification of a conserved DNA binding motif in the Bmp4 enhancer for Pitx homeoproteins, which are also expressed in the developing mandibular and incisor epithelium. In vitro electrophoretic mobility shift assays (EMSA) and in vivo transgenic reporter mutational analyses revealed that this site supports Pitx binding and that the site is necessary to recapitulate aspects of endogenous Bmp4 expression in developing craniofacial and limb tissues. Finally, Pitx2 chromatin immunoprecipitation (ChIP) demonstrated direct binding of Pitx2 to this Bmp4 enhancer site in a dental epithelial cell line. These results establish a direct molecular regulatory link between Pitx family members and Bmp4 gene expression in developing incisor epithelium

    p63 and SOX2 Dictate Glucose Reliance and Metabolic Vulnerabilities in Squamous Cell Carcinomas

    Get PDF
    Squamous cell carcinoma (SCC), a malignancy arising across multiple anatomical sites, is responsible for significant cancer mortality due to insufficient therapeutic options. Here, we identify exceptional glucose reliance among SCCs dictated by hyperactive GLUT1-mediated glucose influx. Mechanistically, squamous lineage transcription factors p63 and SOX2 transactivate the intronic enhancer cluster of SLC2A1. Elevated glucose influx fuels generation of NADPH and GSH, thereby heightening the anti-oxidative capacity in SCC tumors. Systemic glucose restriction by ketogenic diet and inhibiting renal glucose reabsorption with SGLT2 inhibitor precipitate intratumoral oxidative stress and tumor growth inhibition. Furthermore, reduction of blood glucose lowers blood insulin levels, which suppresses PI3K/AKT signaling in SCC cells. Clinically, we demonstrate a robust correlation between blood glucose concentration and worse survival among SCC patients. Collectively, this study identifies the exceptional glucose reliance of SCC and suggests its candidacy as a highly vulnerable cancer type to be targeted by systemic glucose restriction
    corecore