4 research outputs found

    Selective activation of p38 mitogen-activated protein kinase in dopaminergic neurons of Substantia nigra leads to nuclear translocation of p53 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice

    Get PDF
    Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by the degeneration of the dopaminergic neurons in the substantia nigra pars compacta (SNpc). Activation of the mixed lineage kinase and c-Jun N-terminal kinase (JNK) has been reported in models of PD. Our focus was to discern whether distinct pathways were activated in cell-specific manner within the SNpc. We now demonstrate the selective phosphorylation of p38 MAP kinase within the dopaminergic neurons, whereas JNK activation occurs predominantly in the microglia. p38 activation results in downstream phosphorylation of p53 and increased p53 mediated transcription of Bax and Puma in the ventral midbrain. Treatment with p38 inhibitor, SB239063 protected primary dopaminergic neurons derived from human progenitor cells from MPP+ mediated cell death and prevented the downstream phosphorylation of p53 and its translocation to the nucleus in vivo, in the ventral midbrain. The increased staining of phosphorylated p38 in the surviving neurons of SNpc in human brain sections from patients with PD and in MPTP treated mice but not in the ventral tegmental area provides further evidence suggesting a role for p38 in the degeneration of dopaminergic neurons of SNpc. We thus demonstrate the cell specific activation of MAP kinase pathways within the SNpc after MPTP treatment emphasizing the role of multiple signaling cascades in the pathogenesis and progression of the disease. Selective inhibitors of p38 may therefore, help preserve the surviving neurons in PD and slow down the disease progression

    Withania somnifera reverses Alzheimer's disease pathology by enhancing low-density lipoprotein receptor-related protein in liver

    No full text
    A 30-d course of oral administration of a semipurified extract of the root of Withania somnifera consisting predominantly of withanolides and withanosides reversed behavioral deficits, plaque pathology, accumulation of beta-amyloid peptides (A beta) and oligomers in the brains of middle-aged and old APP/PS1 Alzheimer's disease transgenic mice. It was similarly effective in reversing behavioral deficits and plaque load in APPSwInd mice (line J20). The temporal sequence involved an increase in plasma A beta and a decrease in brain A beta monomer after 7 d, indicating increased transport of A beta from the brain to the periphery. Enhanced expression of low-density lipoprotein receptor-related protein (LRP) in brain microvessels and the A beta-degrading protease neprilysin (NEP) occurred 14-21 d after a substantial decrease in brain A beta levels. However, significant increase in liver LRP and NEP occurred much earlier, at 7 d, and were accompanied by a rise in plasma sLRP, a peripheral sink for brain A beta. In WT mice, the extract induced liver, but not brain, LRP and NEP and decreased plasma and brain A beta, indicating that increase in liver LRP and sLRP occurring independent of A beta concentration could result in clearance of A beta. Selective down-regulation of liver LRP, but not NEP, abrogated the therapeutic effects of the extract. The remarkable therapeutic effect of W. somnifera mediated through up-regulation of liver LRP indicates that targeting the periphery offers a unique mechanism for A beta clearance and reverses the behavioral deficits and pathology seen in Alzheimer's disease models
    corecore