4,131 research outputs found
Geometric phase for neutrino propagation in magnetic field
The geometric phase for neutrinos propagating in an adiabatically varying
magnetic field in matter is calculated. It is shown that for neutrino
propagation in sufficiently large magnetic field the neutrino eigenstates
develop a significant geometric phase. The geometric phase varies from 2
for magnetic fields fraction of a micro gauss to for fields gauss or more. The variation of geometric phase with magnetic field
parameters is shown and its phenomenological implications are discussed
A study of disordered systems with gain: Stochastic Amplification
A study of statistics of transmission and reflection from a random medium
with stochastic amplification as opposed to coherent amplification is
presented. It is found that the transmission coefficient , for sample length
less than the critical length grows exponentially with . In the
limit transmission decays exponentially as \avg{lnt} = -L/\xi
where is the localization length. In this limit reflection coefficient
saturates to a fixed value which shows a monotonic increase as a function
of strength of amplification . The stationary distribution of
super-reflection coefficient agrees well with the analytical results obtained
within the random phase approximation (RPA). Our model also exhibits the well
known duality between absorption and amplification. We emphasize the major
differences between coherent amplification and stochastic amplification
where-ever appropriate.Comment: 7 pages RevTex, two column format, 9 eps figures included mpeg
simulations at http://www.iopb.res.in/~joshi/mpg.htm
An integrated control/structure design method using multi-objective optimization
The benefits are demonstrated of a multiobjective optimization based control structure integrated design methodology. An application of the proposed CSI methodology to the integrated design of the Spacecraft COntrol Lab Experiment (SCOLE) configuration is presented. Integrated design resulted in reducing both the control performance measure and the mass. Thus, better overall performance is achieved through integrated design optimization. The mutliobjective optimization approach used provides Pareto optimal solutions by unconstrained minimization of a differentiable KS function. Furthermore, adjusting the parameters gives insight into the trade-offs involved between different objectives
Quantum Stochastic Absorption
We report a detailed and systematic study of wave propagation through a
stochastic absorbing random medium. Stochastic absorption is modeled by
introducing an attenuation constant per unit length in the free
propagation region of the one-dimensional disordered chain of delta function
scatterers. The average value of the logarithm of transmission coefficient
decreases linearly with the length of the sample. The localization length is
given by , where and
are the localization lengths in the presence of only disorder and
of only absorption respectively. Absorption does not introduce any additional
reflection in the limit of large , i.e., reflection shows a monotonic
decrease with and tends to zero in the limit of , in
contrast to the behavior observed in case of coherent absorption. The
stationary distribution of reflection coefficient agrees well with the
analytical results obtained within random phase approximation (RPA) in a larger
parameter space. We also emphasize the major differences between the results of
stochastic and coherent absorption.Comment: RevTex, 6 pages,2 column format, 9 .eps figures include
- …