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A study of disordered systems with gain: Stochastic Amplification
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A study of statistics of transmission and reflection from a random medium with stochastic am-
plification as opposed to coherent amplification is presented. It is found that the transmission
coefficient t, for sample length L less than the critical length Lc grows exponentially with L. In the
limit L → ∞ transmission decays exponentially as 〈lnt〉 = −L/ξ where ξ is the localization length.
In this limit reflection coefficient r saturates to a fixed value which shows a monotonic increase as
a function of strength of amplification α. The stationary distribution of super-reflection coefficient
agrees well with the analytical results obtained within the random phase approximation (RPA).
Our model also exhibits the well known duality between absorption and amplification. We empha-
size the major differences between coherent amplification and stochastic amplification where-ever
appropriate.

PACS Numbers: 42.25.Bs, 71.55.Jv, 72.15.Rn, 05.40.+j

With the development of scaling theory of localization
our understanding of the Anderson localization of elec-
trons in disordered systems has advanced considerably
[1]. In close analogy with this it was felt that light waves
in a medium with random dielectric constant may also
exhibit localization [2]. In the interaction of light with
matter apart from scattering, absorption plays a very
important role. Due to absorption, light intensity gets
strongly attenuated after being scattered a few times.
Presence of gain in the medium not only compensates
for this absorption but also opens up the possibility of
observing interesting phenomenon arising due to inter-
play of disorder and amplification in strongly scattering
media. This gave birth to the fascinating idea of the so-
called “random lasers” which are essentially mirror-less
lasers [4]. The obvious importance of this in the field
of laser instrumentation together with viability of multi-
ple scattering experiments using powdered laser crystals
or micro-particle suspensions in laser dyes fueled an in-
tense research activity in the field in recent years [3].
The different techniques employed in the theoretical in-
vestigations include the time-independent studies of re-
flection and transmission using invariant imbedding [4–7]
equations and transfer matrix technique [8–12] for one-
dimensional systems, Fokker-Planck equation for many
channel case [13–15] and time dependent diffusion equa-
tion approach [16]. In these studies the gain or amplifi-
cation(absorption) is modeled by introducing an imagi-
nary part into the dielectric constant in case of classical
(electro-magnetic) waves in random medium or into the
site energy for the tight-binding models [10,11]. This
amounts to making the potential complex leading to a
non-Hermitian Hamiltonian [4–6,8–19]. The resulting
amplification is referred to as coherent amplification.

The presence of imaginary potential gives rise to many
a counter-intuitive features and some interesting results.

Due to the real to complex mismatch experienced by the
incident waves in the vicinity of the amplifying medium
there is an enhanced back reflection. Thus the medium
acts as an amplifier as well as a reflector. This dual
role implies that amplification without reflection is not
possible [17,18]. In fact in the limit of the strength of
imaginary part of the potential becoming infinite, reflec-
tion probability tends to unity, i.e., the amplifier acts as
a perfect reflector [10,11]. The stationary distribution
from such a disordered coherently amplifying medium,
calculated under the assumption of random phase ap-
proximation using invariant imbedding method is given
by [4]

Ps(r) =
|D|exp(− |D|

r−1
)

(r − 1)2
for r ≥ 1 (1)

= 0 for r < 1

Here D is proportional to Vi/W , Vi and W being the
strength of imaginary part of the potential and disorder
respectively. The distribution peaks at a single value
of r > 1 which keeps shifting to higher values of r
with increasing amplification. On the contrary, the exact
distribution obtained numerically [11] exhibits a double
peaked structure for strong amplification or disorder and
in the limit of perfect reflector (Vi → ∞) becomes a delta
function at r = 1 in consistency with the physics of the
problem. The transmission coefficient is also known to
exhibit equally surprising features. Despite amplifica-
tion, in the limit of sample length L → ∞ the transmis-
sion falls off exponentially as a function of L with a well
defined localization length ξ not only when there is dis-
order along with but also in case of a perfectly periodic
amplifying medium [8–15]. Moreover, the rate of expo-
nential decay is the same as that of an absorbing medium,
i.e., ξ(Vi) = ξ(−Vi). This symmetry, which has been re-
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ferred to as duality between absorption and amplification
in the literature follows from the time-independent wave
equation [14]. Recently, Soukoulis et. al. have claimed
that this paradoxical result is a mere artifact of time-
independent equations. Based on the analysis of the ge-
ometric series for the transmission amplitude they argue
that depending on the gain parameter the series becomes
divergent beyond a particular length indicating the ab-
sence of stable time-independent solutions [19]. However,
it is to be noted that the exact calculation of the trans-
mission coefficient (as a scattering problem) as a function
of length for an ordered lasing medium does not show any
divergence. As a function of length transmission coeffi-
cient exhibits a maximum both for ordered as well as
disordered lasing systems.

The interesting features discussed above seem to be a
fallout of the fact that the phase coherence of the waves in
a medium thus modeled is maintained in spite of the pres-
ence of amplification justifying the term coherent am-
plification. In the present work we endeavor to study
a different model for amplification in the framework of
time-independent wave equations which gives qualita-
tively different results for statistics of super-reflection in
the strong amplification regime. The model was used
to study stochastic absorption also [20]. In this sim-
ple minded model a chain of uniformly spaced random
strength delta function scatterers act as the disordered
medium. A negative attenuation constant per unit length
α characterizes the stochastic amplification. The free
propagator acquires a factor exp(αa) for each trip while
traversing the free region of length a in between the scat-
terers [21]. We find that this method of incorporating
amplification avoids the additional reflections and res-
onances observed in case of coherent amplification as
mentioned above. The continuum limit of our model
yields the same Langevin equation for reflection ampli-
tude R(L) as obtained by Pradhan [22,23] for the case
of stochastic absorption except that α is to be replaced
by −2α. The stationary solution of the Fokker-Planck
equation for the probability distribution of reflection co-
efficient Ps(r) in case of lasing medium obtained within
RPA, however, is the same as given by Eq. 1 with the D
in the expression now proportional to α/W . The numer-
ically obtained exact stationary distribution of reflection
coefficient agrees well with the analytical result for small
values of α but in larger parameter space as compared to
the coherent amplification case [11,20]. With increasing
α the stationary value 〈lnr〉s keeps increasing monoton-
ically as against the non-monotonic behavior observed
in case of coherent amplification. For coherent ampli-
fication 〈lnr〉s approaches zero in the α → ∞ limit as
the amplifier then acts as a perfect reflector. One does
not expect this from a realistic amplifying medium. Our
phenomenological model rectifies this problem. Although
the properties of reflection coefficient for stochastic am-
plification are qualitatively contrasting, the properties of
transmission show some similarities with those observed
in case of coherent amplification. In the present model

the transmission decays exponentially with the sample
length L with a well defined localization length ξ. This
localization length turns out to be equal to the one ob-
tained for stochastic absorption, i.e., we find that this
model also exhibits the dual symmetry. However, there
are some minor differences in regard to the critical system
length Lc beyond which the transmission starts decaying.
In the following we begin by briefly describing the model
and numerical procedure. We then present results and
discussions and finally we give some conclusions.

We take recourse to the transfer matrix technique for
our numerical calculations [24,25]. As mentioned earlier
the chain of random strength delta function scatterers
spaced at regular intervals of length a plays the role of
a disordered medium. The transfer matrix for jth delta
function having strength qj is

Mj =

(

1 − iqj/2k −iqj/2k
iqj/2k 1 + iqj/2k

)

The qj ’s are chosen from a flat distribution between
−W/2 and W/2, i.e., P (qj) = 1/W where W is the
strength of the disorder. We choose to work with units
such that h̄ and 2m are unity and therefore E = k2 is
the energy of the incident wave. W and α are scaled
to make them dimensionless. Stochastic amplification is
introduced in the free propagation medium through the
transfer matrix [20]

X =

(

eik+α 0
0 e−ik−α

)

.

The total transfer matrix for the stochastically ampli-
fying medium is then obtained by recursive multiplica-
tion of these matrices i.e.,

M = MLX....XM2XM1.

One can then calculate the reflection and transmission
coefficient from the matrix M by using the well-know
formulae [25]

R = −
M(2, 1)

M(2, 2)

and

T = −
detM

M(2, 2)
.

Needless to say that since we are working with non-
Hermitian systems r + t 6= 1. In the results presented
here we have considered at least 10,000 realizations for
calculating the various distributions and averages and
the incident energy is chosen to be E = k2 = 1 un-
less specified otherwise. We consider chains of length
about 10 times the localization length in order to eval-
uate the stationary distributions. The distributions did
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not evolve on increasing length beyond 10ξ. To show
the exponential scaling of transmission coefficient with
length L of the sample we plot 〈lnt〉 versus L/ξ in Fig. 1
for W =1.0 and different values of amplification strength
α (α =0.01,0.05,0.1,0.15). From the figure it is evident
that there is a critical length Lc of the system upto which
the transmission grows and beyond that the exponential
decay takes over. For L < Lc the transmission increases
with sample length as 〈lnt〉 = (1/ξa − 1/ξw)L as found
in earlier studies [5,12]. Here ξa ∼ 1/α is the gain length
characterizing the exponential growth of the transmis-
sion in absence of disorder and presence of amplification
only. ξw = 96k2/W 2 is the localization length in the
presence of disorder alone [26]. In the limit W → 0,
〈lnt〉 ∼ L/ξa and Lc → ∞ i.e., in absence of disorder
transmission keeps growing with sample length. In con-
trast to this, for coherent amplification Lc → L0

c , a fixed
value for W → 0. This is due to the fact that even in
the ordered case coherent amplification leads to backscat-
tering, i.e., reflection. In the present case of stochastic
amplification for an ordered system transmission coef-
ficient grows exponentially with length. The presence
of disorder induces coherent backscattering leading to
the exponential decay (localization) of the transmission
in the asymptotic limit in spite of amplification. For
lengths greater than Lc, i.e., L ≫ Lc, the behavior of
〈lnt〉 versus L is given by 〈lnt〉 = −L/ξ, where ξ is the
localization length scaled with respect to inter-scatterer
spacing a. The plot of 1/ξ, calculated numerically by
changing α for various values of disorder strength, versus
(1/ξa + 1/ξw) shown in Fig. 2 suggests the scaling re-
lation 1/ξ = (1/ξa + 1/ξw) for the localization length in
presence of both disorder and amplification. The value
of ξ thus obtained was used for the plot of Fig. 1. We
note that this relation is identical to one obtained for the
localization length in case of a stochastically absorbing
medium, i.e., ξ(α, W ) = ξ(−α, W ) [20]. This gives the
numerical evidence for the fact that our model also ex-
hibits the much debated duality between absorption and
amplification. Although the same duality is observed in
case of coherent amplification and absorption it is impor-
tant to realize that in the present case the duality rela-
tion holds only for non-zero disorder strength (W 6= 0)
whereas in the former it was valid even for W = 0. To
explicate the point of dual symmetry we have shown the
plot of 〈lnt〉 versus L for α = ±0.1 in Fig. 3. From the
figure we see that the asymptotic slope of the transmis-
sion coefficient for absorption as well as amplification (
L ≫ Lc) are equal.

The log-scale plot shown in Fig. 4 illustrates the de-
pendence of the avarage transmission 〈t〉, the root mean

squared (rms) variance of t, namely tv =

√

〈t2〉 − 〈t〉
2

and the rms relative variance trv = tv/ 〈t〉 on the sam-
ple length L. For L < ξ, rms variance of t is less than
the average value of t, i.e., tv < 〈t〉 and consequently
rms relative variance is less than unity (trv < 1). How-
ever, for L > ξ the rms variance of t exceeds the average

transmission (tv > 〈t〉) and rms relative variance crosses
unity (trv > 1) indicating the onset of non-self-averaging
(NSA) nature of transmission [28,29]. Therefore for sam-
ples of length L > ξ the average transmission over an en-
semble of macroscopically identical samples is dominated
over by the sample-to-sample fluctuations in t. The sen-
sitivity of the transmission coefficient to the exact spa-
tial realization of the impurities gets highly enhanced. A
look at the plot of the distribution of the transmission
coefficient at different lengths shown in Fig. 5 helps to
shed more light on this. The parameters for the figure
are α =0.01 and disorder strength W=1.0. Correspond-
ing localization length is ξ ∼50.0. For sample lengths
(see L =5) much smaller than the localization length
(L << ξ), though the resonant transmission dominates,
the distribution peaks at a value of t close to unity be-
cause amplification strength is small. On increasing the
length L further (L =10,20) the peak shifts to higher val-
ues of t. When the sample length becomes comparable
to the localization length (L ∼ ξ ∼ 50), multiple reflec-
tions start dominating. Due to these multiple reflections
time spent inside the medium increases thereby enhanc-
ing the amplification. This broadens the distribution and
tails start appearing. This, however, does not continue
indefinitely with increasing length. As seen earlier finally
in the long length limit (L ≫ ξ) transmission decays to
zero exponentially with length. This reflects in the dis-
tributions of t also. The peak of the distribution starts
shifting to values of t much less than one and simultane-
ously develops long tails. These tails are a clear signa-
ture of the sample-to-sample fluctuations which tender
the non-self-averaging nature to the transmission coeffi-
cient. The origin of these tails can presumably be traced
back to the so-called Azbel resonances observed in case of
passive disordered media [27]. Since we have amplifica-
tion in addition to disorder it would be naive to expect no
change whatsoever in the structure of these resonances.
Thus a study of resonances in our model is in order. For
the purpose we assume that the ergodic hypothesis of
relation between the ensemble fluctuations and the fluc-
tuations for a given sample as a function of the chemical
potential holds true in the present case. Plot of Fig. 6
shows the variation of transmission coefficient with the
wave vector k for a single realization of the disorder, both
in the absence and in the presence of amplification. The
plot reveals that presence of amplification modifies the
resonances observed in case of passive medium in two
ways namely, the value of transmission at the resonances
is either enhanced (t > 1) or reduced (t < 1) depending
upon the sample length L and the widths of the resonance
peaks is reduced in case of the amplifying medium. Un-
resolved or closely spaced resonance peaks in the case of
passive disorder are resolved due to the narrowing effect
of amplification. This also can be interpreted in the fol-
lowing manner: two nearby overlapping resonances may
have charateristically different delay times [30] or dwell
times [31]. Due to this enhancement of the transmittance
by the amplification will be very different and hence the
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resolution. This clearly indicates that amplification does
not give rise to any new resonances and only modifies
the existing resonances vis-a-vis their strength and reso-
lution. We have verified the above observation for many
different macroscopic realizations of the underlying dis-
order. This is in contrast to the case of coherent am-
plification where new resonances can appear due to the
reflecting nature of imaginary potentials. Such complex
potentials can give additional phase shifts leading to new
resonances in addition to those seen in case of the same
disordered realization but in the absence of imaginary
potential.

We shall now discuss about the statistics of reflection
coefficient which exhibits properties radically different
from those observed for coherent amplification in the
limit of strong amplification. Fig. 7 shows the varia-
tion of 〈lnr〉 with L for a fixed value of disorder strength
W =1.0 and various values of amplification strength α
as indicated in the figure. As a function of length 〈lnr〉
increases monotonically. In the long length limit L ≫ ξ,
〈lnr〉 saturates to a certain positive value 〈lnr〉s depend-
ing upon the value of disorder strength W and amplifica-
tion strength α. At any length we notice that reflection
(super-reflection) increases with increasing α.

In Fig. 8 we show the stationary distribution of reflec-
tion coefficient Ps(r) for different values of amplification
strength α. For small values of α (α = 0.001) the dis-
tribution peaks at small values of r close to unity. On
increasing α the peak shifts to larger values of r. The sin-
gle parameter fit obtained using the analytical expression
given in Eq. 1 is shown by a thick line. On increasing
α further (α > 0.1) the peak of the distribution contin-
ues to shift to higher values of r. Although the fit is no
more valid, the qualitative features of the distribution,
i.e., single prominent peak and long tail, do not change.
We have observed in our numerical calculations that in
this parameter range the distribution of phase of reflected
wave shows two distinct peaks indicating breakdown of
RPA. This is in striking contrast to the perfect reflector
behavior observed for the case of coherent amplification
[11] where on increasing amplification beyond a certain
strength the distribution starts moving to lower values
of r and in the limit Vi → ∞, Ps(r) → δ(r − 1). In
the intermediate regime of Vi, the Ps(r) in the coher-
ent amplification exhibits a double peak structure rem-
iniscent of the additional reflections introduced by the
imaginary potential (see Ref. [11] for details). We do not
have any such additional reflections arising due to am-
plification in the case of stochastic amplification. This is
also reflected from the plot of 〈lnr〉s versus amplification
strength α shown in Fig. 9. Recall that the 〈lnr〉s was
a non-monotonic function of α in case of coherent ampli-
fication. In contrast here we find that 〈lnr〉s is a mono-
tonically increasing function of α in accordance with the
physical expectations from this model.

In summary, we have explored the effect of disorder
on the stochastic amplification by numerically studying
the statistics of transmission and reflection. It is found

that localization occurs solely due to the presence of dis-
order. The critical length Lc goes to infinity as disor-
der strength is reduced to zero. The transmittance for
absorbing as well as amplifying medium falls off expo-
nentially with length in the asymptotic limit with same
localization length depending on the values of |α| and
W . Thus the model exhibits duality between absorption
and amplification. The transmittance is found to be NSA
for L > ξ. Stochastic amplification does not introduce
any new resonances in the behavior of transmittance as
a function of energy. The average value of logarithm of
reflection coefficient shows monotonic increase with in-
creasing amplification strength α in contrast to the be-
havior observed in case of coherent amplification. The
numerically calculated stationary distribution agrees well
with the analytical result in a larger parameter space.
For strong amplification regime the distribution still re-
tains the same qualitative features with peak shifting to
higher values of reflection. Thus there is no additional
reflection due to presence of amplification as against the
observation in case of coherent amplification.
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FIG. 4. Average transmission coefficient 〈t〉, rms variance
of t and rms relative variance of t as a function of L/ξ for
fixed disorder W = 1.0 and amplification α = 0.01.
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FIG. 8. Stationary distribution of reflection coefficient for
a fixed value of disorder strength W = 1.0 and different val-
ues of amplification strength α. The thick line shows the
single parameter fit of analytical expression Eqn.1 with (a)
D = 0.197 for α = 0.001,(b) D = 1.92 for α = 0.01 and (c)
D = 20.53 for α = 0.1.
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FIG. 9. Average value of logarithm of reflection coefficient
(〈lnr〉) versus amplification strength α for W = 1.0 and
L/ξ = 10.
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