717 research outputs found

    Why do naked singularities form in gravitational collapse?

    Get PDF
    We investigate what are the key physical features that cause the development of a naked singularity, rather than a black hole, as the end-state of spherical gravitational collapse. We show that sufficiently strong shearing effects near the singularity delay the formation of the apparent horizon. This exposes the singularity to an external observer, in contrast to a black hole, which is hidden behind an event horizon due to the early formation of an apparent horizon.Comment: revised for clarity, new figure included; version accepted by Phys. Rev. D (RC

    A hadronic scenario for HESS J1818-154

    Get PDF
    Aims: G15.4+0.1 is a faint supernova remnant (SNR) that has recently been associated with the γ-ray source HESS J1818-154. We investigate a hadronic scenario for the production of the γ-ray emission. Methods: Molecular 13 CO (J = 1-0) taken from the Galactic Ring Survey (GRS) and neutral hydrogen (HI) data from the Southern Galactic Plane Survey (SGPS) have been used in combination with new 1420 MHz radio continuum observations carried out with the Giant Metrewave Radio Telescope (GMRT). Results: From the new observations and analysis of archival data we provided for the first time a reliable estimate for the distance to the SNR G15.4+0.1 and discovered molecular clouds located at the same distance. On the basis of HI absorption features, we estimate the distance to G15.4+0.1 in 4.8 ± 1.0 kpc. The 13 CO observations clearly show a molecular cloud about 5´ in size with two bright clumps, labeled A and B, clump A positionally associated with the location of HESS J1818-154 and clump B in coincidence with the brightest northern border of the radio SNR shell. The HI absorption and the 13 CO emission study indicates a possible interaction between the molecular material and the remnant. We estimate the masses and densities of the molecular gas as (1.2 ± 0.5) × 10 3 M⊙ and (1.5 ± 0.4) × 10 3 cm -3 for clump A and (3.0 ± 0.7)× 10 3 M⊙ and (1.1 ± 0.3) × 10 3 cm -3 for clump B. Calculations show that the average density of the molecular clump A is sufficient to produce the detected γ-ray flux, thus favoring a hadronic origin for the high-energy emission.Fil: Castelletti, Gabriela Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio(i); Argentina;Fil: Supán, Jorge Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio(i); Argentina;Fil: Dubner, Gloria Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio(i); Argentina;Fil: Joshi, B.C.. National Centre for Radio Astrophysics (NCRA); India;Fil: Surnis, M.P.. National Centre for Radio Astrophysics (NCRA); India

    High-Speed Cylindrical Collapse of Two Perfect Fluids

    Full text link
    In this paper, the study of the gravitational collapse of cylindrically distributed two perfect fluid system has been carried out. It is assumed that the collapsing speeds of the two fluids are very large. We explore this condition by using the high-speed approximation scheme. There arise two cases, i.e., bounded and vanishing of the ratios of the pressures with densities of two fluids given by cs,dsc_s, d_s. It is shown that the high-speed approximation scheme breaks down by non-zero pressures p1,p2p_1, p_2 when cs,dsc_s, d_s are bounded below by some positive constants. The failure of the high-speed approximation scheme at some particular time of the gravitational collapse suggests the uncertainity on the evolution at and after this time. In the bounded case, the naked singularity formation seems to be impossible for the cylindrical two perfect fluids. For the vanishing case, if a linear equation of state is used, the high-speed collapse does not break down by the effects of the pressures and consequently a naked singularity forms. This work provides the generalisation of the results already given by Nakao and Morisawa [1] for the perfect fluid.Comment: 11 pages, 1 figure, accepted for publication in Gen. Rel. Gra

    Semiclassical Instability of the Cauchy Horizon in Self-Similar Collapse

    Full text link
    Generic spherically symmetric self-similar collapse results in strong naked-singularity formation. In this paper we are concerned with particle creation during a naked-singularity formation in spherically symmetric self-similar collapse without specifying the collapsing matter. In the generic case, the power of particle emission is found to be proportional to the inverse square of the remaining time to the Cauchy horizon (CH). The constant of proportion can be arbitrarily large in the limit to marginally naked singularity. Therefore, the unbounded power is especially striking in the case that an event horizon is very close to the CH because the emitted energy can be arbitrarily large in spite of a cutoff expected from quantum gravity. Above results suggest the instability of the CH in spherically symmetric self-similar spacetime from quantum field theory and seem to support the existence of a semiclassical cosmic censor. The divergence of redshifts and blueshifts of emitted particles is found to cause the divergence of power to positive or negative infinity, depending on the coupling manner of scalar fields to gravity. On the other hand, it is found that there is a special class of self-similar spacetimes in which the semiclassical instability of the CH is not efficient. The analyses in this paper are based on the geometric optics approximation, which is justified in two dimensions but needs justification in four dimensions.Comment: 14 pages, 4 figures, minor errors corrected and some sentences added in the introduction, accepted for publication in Physical Review

    Higher dimensional radiation collapse and cosmic censorship

    Get PDF
    We study the occurrence of naked singularities in the spherically symmetric collapse of radiation shells in a higher dimensional spacetime. The necessary conditions for the formation of a naked singularity or a black hole are obtained. The naked singularities are found to be strong in the Tipler's sense and thus violating cosmic censorship conjecture.Comment: 4 pages, ReVTeX, Phys Rev D Vol 62 107502 (2000

    Gravitational collapse of a Hagedorn fluid in Vaidya geometry

    Get PDF
    The gravitational collapse of a high-density null charged matter fluid, satisfying the Hagedorn equation of state, is considered in the framework of the Vaidya geometry. The general solution of the gravitational field equations can be obtained in an exact parametric form. The conditions for the formation of a naked singularity, as a result of the collapse of the compact object, are also investigated. For an appropriate choice of the arbitrary integration functions the null radial outgoing geodesic, originating from the shell focussing central singularity, admits one or more positive roots. Hence a collapsing Hagedorn fluid could end either as a black hole, or as a naked singularity. A possible astrophysical application of the model, to describe the energy source of gamma-ray bursts, is also considered.Comment: 14 pages, 2 figures, to appear in Phys. Rev.

    Is symmetry identity?

    Full text link
    Wigner found unreasonable the "effectiveness of mathematics in the natural sciences". But if the mathematics we use to describe nature is simply a coded expression of our experience then its effectiveness is quite reasonable. Its effectiveness is built into its design. We consider group theory, the logic of symmetry. We examine the premise that symmetry is identity; that group theory encodes our experience of identification. To decide whether group theory describes the world in such an elemental way we catalogue the detailed correspondence between elements of the physical world and elements of the formalism. Providing an unequivocal match between concept and mathematical statement completes the case. It makes effectiveness appear reasonable. The case that symmetry is identity is a strong one but it is not complete. The further validation required suggests that unexpected entities might be describable by the irreducible representations of group theory
    • …
    corecore