7 research outputs found

    Formulation And Development Of Transdermal Patch Of Amlodipine Besylate Using Novel Polymers As Rate Controlling Membrane

    Get PDF
    This research study aims to formulate, prepare and evaluate transdermal drug delivery system for the purpose of controlled release of Amlodipine Bebesylate as a model drug using different polymers as a rate controlling membraneamlodipine undergoes first pass metabolism and also has easy permeability through skin therefore transdermal system of Amlodipine Bebesylate can be developed. The transdermal patches for the delivery were prepared by evaporation method i.e., solvent evaporation method. A matrix-type amlodipine besylate transdermal drug delivery system was prepared using novel polymers such as hydroxypropyl methylcellulose (HPMC) and sodium carboxymethylcellulose (SCMC) and Carbopol P 934 as a rate controlling or rate limiting membrane which delivers the drug or releases the therapeutic drugin controlled and a predetermined manner and rate. The formula for the transdermal patch was optimized using the experimental design. On the basis of the Data from drug release studies and the drug content the optimized batch was found to be F14 showing 80.1% of drug release and 95.62% of drug content. The patches were also evaluated forvarious evaluation parameters such as thickness uniformity,weight variation, moisture content determination, hygroscopicity &tensile strength

    Synthesis, Spectroscopic Properties, and Photoinduced CO-Release Studies of Functionalized Ruthenium(II) Polypyridyl Complexes: Versatile Building Blocks for Development of CORM–Peptide Nucleic Acid Bioconjugates

    No full text
    A series of ruthenium­(II) dicarbonyl complexes of formula [RuCl<sub>2</sub>(L)­(CO)<sub>2</sub>] (L = bpy<sup>CH3,CH3</sup> = 4,4′-dimethyl-2,2′-bipyridine, bpy<sup>CH3,CHO</sup> = 4′-methyl-2,2′-bipyridine-4-carboxyaldehyde, bpy<sup>CH3,COOH</sup> = 4′-methyl-2,2′-bipyridine-4-carboxylic acid, CppH = 2-(pyridin-2-yl)­pyrimidine-4-carboxylic acid, dppzcH = dipyrido­[3,2-a:2′,3′-c]­phenazine-11-carboxylic acid), and [RuCl­(L)­(CO)<sub>2</sub>]<sup>+</sup> (L = tpy<sup>COOH</sup> = 6-(2,2′:6′,2″-terpyridine-4′-yloxy)­hexanoic acid) has been synthesized. In addition, a high-yield synthesis of a peptide nucleic acid (PNA) monomer containing the 2-(pyridin-2-yl)­pyrimidine ligand was also developed, and this compound was used to prepare the first Ru­(II) dicarbonyl complex, [RuCl<sub>2</sub>(Cpp-L-PNA)­(CO)<sub>2</sub>],(Cpp-L-PNA = <i>tert</i>-butyl-<i>N</i>-[2-(<i>N</i>-9-fluorenylmethoxycarbonyl)­aminoethyl]-<i>N</i>-[6-(2-(pyridin-2-yl)­pyrimidine-4-carboxamido)­hexanoyl]­glycinate) attached to a PNA monomer backbone. Such metal-complex PNA–bioconjugates are attracting profound interest for biosensing and biomedical applications. Characterization of all complexes has been undertaken by IR and NMR spectroscopy, mass spectrometry, elemental analysis, and UV–vis spectroscopy. Investigation of the CO-release properties of the Ru­(II) complexes in water/dimethyl sulfoxide (49:1) using the myoglobin assay showed that they are stable under physiological conditions in the dark for at least 60 min and most of them even for up to 15 h. In contrast, photoinduced CO release was observed upon illumination at 365 nm, the low-energy shoulder of the main absorption maximum centered around 300 nm, establishing these compounds as a new class of PhotoCORMs. While the two 2,2′-bipyridine complexes release 1 equiv of CO per mole of complex, the terpyridine, 2-(2′-pyridyl)­pyrimidine, and dipyrido­[3,2-a:2′,3′-c]­phenazine complexes are less effective CO releasers. Attachment of the 2-(2′-pyridyl)­pyrimidine complex to a PNA backbone as in [RuCl<sub>2</sub>(Cpp-L-PNA)­CO<sub>2</sub>] did not significantly change the spectroscopic or CO-release properties compared to the parent complex. Thus, a novel class of Ru­(II)-based PhotoCORMs has been established which can be coupled to carrier delivery vectors such as PNA to facilitate cellular uptake without loss of the inherent CORM properties of the parent compound

    Synthesis, Spectroscopic Properties, and Photoinduced CO-Release Studies of Functionalized Ruthenium(II) Polypyridyl Complexes: Versatile Building Blocks for Development of CORM–Peptide Nucleic Acid Bioconjugates

    No full text
    A series of ruthenium­(II) dicarbonyl complexes of formula [RuCl<sub>2</sub>(L)­(CO)<sub>2</sub>] (L = bpy<sup>CH3,CH3</sup> = 4,4′-dimethyl-2,2′-bipyridine, bpy<sup>CH3,CHO</sup> = 4′-methyl-2,2′-bipyridine-4-carboxyaldehyde, bpy<sup>CH3,COOH</sup> = 4′-methyl-2,2′-bipyridine-4-carboxylic acid, CppH = 2-(pyridin-2-yl)­pyrimidine-4-carboxylic acid, dppzcH = dipyrido­[3,2-a:2′,3′-c]­phenazine-11-carboxylic acid), and [RuCl­(L)­(CO)<sub>2</sub>]<sup>+</sup> (L = tpy<sup>COOH</sup> = 6-(2,2′:6′,2″-terpyridine-4′-yloxy)­hexanoic acid) has been synthesized. In addition, a high-yield synthesis of a peptide nucleic acid (PNA) monomer containing the 2-(pyridin-2-yl)­pyrimidine ligand was also developed, and this compound was used to prepare the first Ru­(II) dicarbonyl complex, [RuCl<sub>2</sub>(Cpp-L-PNA)­(CO)<sub>2</sub>],(Cpp-L-PNA = <i>tert</i>-butyl-<i>N</i>-[2-(<i>N</i>-9-fluorenylmethoxycarbonyl)­aminoethyl]-<i>N</i>-[6-(2-(pyridin-2-yl)­pyrimidine-4-carboxamido)­hexanoyl]­glycinate) attached to a PNA monomer backbone. Such metal-complex PNA–bioconjugates are attracting profound interest for biosensing and biomedical applications. Characterization of all complexes has been undertaken by IR and NMR spectroscopy, mass spectrometry, elemental analysis, and UV–vis spectroscopy. Investigation of the CO-release properties of the Ru­(II) complexes in water/dimethyl sulfoxide (49:1) using the myoglobin assay showed that they are stable under physiological conditions in the dark for at least 60 min and most of them even for up to 15 h. In contrast, photoinduced CO release was observed upon illumination at 365 nm, the low-energy shoulder of the main absorption maximum centered around 300 nm, establishing these compounds as a new class of PhotoCORMs. While the two 2,2′-bipyridine complexes release 1 equiv of CO per mole of complex, the terpyridine, 2-(2′-pyridyl)­pyrimidine, and dipyrido­[3,2-a:2′,3′-c]­phenazine complexes are less effective CO releasers. Attachment of the 2-(2′-pyridyl)­pyrimidine complex to a PNA backbone as in [RuCl<sub>2</sub>(Cpp-L-PNA)­CO<sub>2</sub>] did not significantly change the spectroscopic or CO-release properties compared to the parent complex. Thus, a novel class of Ru­(II)-based PhotoCORMs has been established which can be coupled to carrier delivery vectors such as PNA to facilitate cellular uptake without loss of the inherent CORM properties of the parent compound
    corecore