49 research outputs found

    Natural Selection For Environmentally Induced Phenotypes In Tadpoles

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137452/1/evo05119.pd

    Protecting biodiversity: Riparian buffers directly affect Appalachian headwater salamanders [abstract]

    Get PDF
    Abstract only availableThere is growing evidence of worldwide amphibian decline. These declines are largely due to land use such as timber harvest in riparian zones. The southern Appalachian Mountains have miles of streams and arguably the greatest diversity of salamanders in the world. Salamanders are the most abundant predator of invertebrate organisms in the southern Appalachians where their biomass often exceeds that of birds and small mammals. Because salamanders have permeable skin and eggs and are sensitive to changes in the environment, they are good indicators of environmental health. Salamanders thrive in riparian areas where they need both aquatic and terrestrial habitats for foraging and reproduction. My study specifically looks at how logging and riparian buffers affect salamanders inhabiting head water streams. The purpose of my research was to measure the density and abundance of adult salamanders in five experimental streams in North Carolina; three were logged retaining 0, 9, and 30 meter riparian buffers, while two streams were studied as controls. Salamander abundance was estimated through removal sampling at each of the streams. I collected 393 total salamanders and found that salamander densities where the highest in the 0m and 9m sites with Desmognathus monticola being the most abundant. The lowest densities were in the 30m and the two controls sites. My results have implications for the long-term persistence of salamanders in streams following logging in riparian habitats

    Anatomy and Pathology Eyes in Various Species Can Shorten to Compensate for Myopic Defocus

    Get PDF
    PURPOSE. We demonstrated that eyes of young animals of various species (chick, tree shrew, marmoset, and rhesus macaque) can shorten in the axial dimension in response to myopic defocus. METHODS. Chicks wore positive or negative lenses over one eye for 3 days. Tree shrews were measured during recovery from induced myopia after 5 days of monocular deprivation for 1 to 9 days. Marmosets were measured during recovery from induced myopia after monocular deprivation, or wearing negative lenses over one or both eyes, or from wearing positive lenses over one or both eyes. Rhesus macaques were measured after recovery from induced myopia after monocular deprivation, or wearing negative lenses over one or both eyes. Axial length was measured with ultrasound biometry in all species. RESULTS. Tree shrew eyes showed a strong trend to shorten axially to compensate for myopic defocus. Of 34 eyes that recovered from deprivation-induced myopia for various durations, 30 eyes (88%) shortened, whereas only 7 fellow eyes shortened. In chicks, eyes wearing positive lenses reduced their rate of ocular elongation by two-thirds, including 38.5% of eyes in which the axial length became shorter than before. Evidence of axial shortening in rhesus macaque (40%) and marmoset (6%) eyes also occurred when exposed to myopic defocus, although much less frequently than that in eyes of tree shrews. The axial shortening was caused mostly by the reduction in vitreous chamber depth. CONCLUSIONS. Eyes of chick, tree shrew, marmoset, and rhesus macaque can shorten axially when presented with myopic defocus, whether the myopic defocus is created by wearing positive lenses, or is the result of axial elongation of the eye produced by prior negative lens wear or deprivation. This eye shortening facilitates compensation for the imposed myopia. Implications for human myopia control are significant

    Generation of Genic Diversity among Streptococcus pneumoniae Strains via Horizontal Gene Transfer during a Chronic Polyclonal Pediatric Infection

    Get PDF
    Although there is tremendous interest in understanding the evolutionary roles of horizontal gene transfer (HGT) processes that occur during chronic polyclonal infections, to date there have been few studies that directly address this topic. We have characterized multiple HGT events that most likely occurred during polyclonal infection among nasopharyngeal strains of Streptococcus pneumoniae recovered from a child suffering from chronic upper respiratory and middle-ear infections. Whole genome sequencing and comparative genomics were performed on six isolates collected during symptomatic episodes over a period of seven months. From these comparisons we determined that five of the isolates were genetically highly similar and likely represented a dominant lineage. We analyzed all genic and allelic differences among all six isolates and found that all differences tended to occur within contiguous genomic blocks, suggestive of strain evolution by homologous recombination. From these analyses we identified three strains (two of which were recovered on two different occasions) that appear to have been derived sequentially, one from the next, each by multiple recombination events. We also identified a fourth strain that contains many of the genomic segments that differentiate the three highly related strains from one another, and have hypothesized that this fourth strain may have served as a donor multiple times in the evolution of the dominant strain line. The variations among the parent, daughter, and grand-daughter recombinant strains collectively cover greater than seven percent of the genome and are grouped into 23 chromosomal clusters. While capturing in vivo HGT, these data support the distributed genome hypothesis and suggest that a single competence event in pneumococci can result in the replacement of DNA at multiple non-adjacent loci

    Concert recording 2016-11-15

    Get PDF
    [Track 1]. Subjugation. Connection [Track 2]. Captivation / Durgan Maxey -- [Track 3]. Fight / Bryce Owens -- [Track 4]. Overture to Stay / Joshua Bland -- [Track 5]. A cellist\u27s legacy. Part I [Track 6]. Part II / Eric Dreggors -- [Track 7]. Evening prayer / Robbie Baker -- [Track 8]. Elegy / Brandon Wade -- [Track 9]. The grotesques trio. Gargoyles [Track 10]. Chimera [Track 11]. Grotesques / Marissa Johnson -- [Track 12]. Crosshair / Joshua Bland -- [Track 13]. Nightwind sings / L. Coley Pitchford -- [Track 14]. Six reflections through poetry. Memories (Walt Whitman) [Track 15]. The musician\u27s wife (Weldon Kees) [Track 16]. The road not taken (Robert Frost) [Track 17]. Lessons (Whitman) [Track 18]. Stronger lessons (Whitman) [Track 19]. O me! O life! (Whitman) / Nick Vecchio -- [Tracks 20-21]. String quartet #1 / Jeremiah Flannery -- [Track 22]. Tides. Morning tide [Track 23]. Bore tide / Elizabeth Greener -- [Track 24]. Shepherd\u27s contemplation / Robbie Baker -- Green grass / arranged by Eva Martin -- [Track 25]. Urbe fracta est II. A prayer for Jerusalem / Joshua Bland

    Comparative analysis and supragenome modeling of twelve Moraxella catarrhalis clinical isolates

    Get PDF
    Contains fulltext : 97744.pdf (publisher's version ) (Open Access)BACKGROUND: M. catarrhalis is a gram-negative, gamma-proteobacterium and an opportunistic human pathogen associated with otitis media (OM) and exacerbations of chronic obstructive pulmonary disease (COPD). With direct and indirect costs for treating these conditions annually exceeding $33 billion in the United States alone, and nearly ubiquitous resistance to beta-lactam antibiotics among M. catarrhalis clinical isolates, a greater understanding of this pathogen's genome and its variability among isolates is needed. RESULTS: The genomic sequences of ten geographically and phenotypically diverse clinical isolates of M. catarrhalis were determined and analyzed together with two publicly available genomes. These twelve genomes were subjected to detailed comparative and predictive analyses aimed at characterizing the supragenome and understanding the metabolic and pathogenic potential of this species. A total of 2383 gene clusters were identified, of which 1755 are core with the remaining 628 clusters unevenly distributed among the twelve isolates. These findings are consistent with the distributed genome hypothesis (DGH), which posits that the species genome possesses a far greater number of genes than any single isolate. Multiple and pair-wise whole genome alignments highlight limited chromosomal re-arrangement. CONCLUSIONS: M. catarrhalis gene content and chromosomal organization data, although supportive of the DGH, show modest overall genic diversity. These findings are in stark contrast with the reported heterogeneity of the species as a whole, as wells as to other bacterial pathogens mediating OM and COPD, providing important insight into M. catarrhalis pathogenesis that will aid in the development of novel therapeutic regimens

    Vision-dependent changes in the choroidal thickness of macaque monkeys. Invest Ophthalmol Vis Sci.

    No full text
    PURPOSE. To determine whether changes in the eye's effective refractive state produce changes in the thickness of the choroid in infant monkeys. METHODS. Normal developmental changes in choroidal thickness were studied in 10 normal rhesus monkeys. Hyperopia or myopia was induced by rearing 26 infant monkeys with either spectacle or diffuser lenses secured in front of one or both eyes. The treatment lenses were worn continuously beginning at approximately 3 weeks of age for an average of 120 days. Refractive status and ocular axial dimensions, including choroidal thickness, were measured by retinoscopy and high-frequency A-scan ultrasonography, respectively. RESULTS. Three lines of evidence indicate that the normal increase in choroidal thickness that occurs during early maturation can be altered by the eye's refractive state. First, in monkeys experiencing form deprivation or those in the process of compensating for imposed optical errors, choroidal thickness and refractive error were significantly correlated with eyes developing myopia having thinner choroids than those developing hyperopia. Second, the choroids in eyes recovering from binocularly induced myopia increased in thickness at a faster rate than the choroids in recovering hyperopic eyes. Third, monkeys recovering from induced anisometropias showed interocular alterations in choroidal thickness that were always in the appropriate direction to compensate for the anisometropia. These changes in choroidal thickness, which were on the order of 50 m, occurred quickly and preceded significant changes in overall eye size

    Nasopharyngeal Microbiome Analyses in Otitis-Prone and Otitis-Free Children

    No full text
    Objectives: About 10-15% children develop frequent acute otitis media (AOM) confirmed by tympanocentesis. These children are designated sOP (stringently defined otitis-prone) because all AOM episodes have been microbiologically confirmed. The cause of otitis-proneness in sOP children is multi-factorial, including frequent otopathogen nasopharyngeal (NP) colonization and deficiency in innate and adaptive immune responses. A largely unexplored contributor to otitis proneness is NP microbiome composition. Since the microbiome modulates otopathogen NP colonization and immune responses, we hypothesized that the NP microbiome composition in sOP children might be dysregulated. Methods: We performed 16S rRNA sequencing to analyze microbiome composition in 157 NP samples from 28 sOP and 68 AOM-free children when they were 6 months or 12 months old and healthy. Bioinformatic approaches were employed to examine the composition difference between the two populations and its correlation with changes in levels of inflammatory cytokines. Results: A different global microbiome profile and reduced alpha diversity was observed in the NP microbiome of sOP children when 6 months old, compared with that from AOM-free children of the same age. This difference was resolved when groups were compared at 12 months old. We found 4 bacterial genera-Bacillus, Veillonella, Gemella, and Prevotella-correlated with higher levels of pro-inflammatory cytokines in the NP. Those 4 bacterial genera were in lower abundance in sOP compared to AOM-free children. Conclusion: Dysbiosis occurs in the NP microbiome of sOP children at an early age even when they were healthy. This dysbiosis correlates with a lower inflammatory state in the NP of these children
    corecore