147 research outputs found

    Role and development of GLP-1 receptor agonists in the management of diabetes

    Get PDF
    Glucagon-like peptide-1 (GLP-1) is a hormone secreted from enteroendocrine L cells of the intestine in response to food. Exogenous GLP-1 administration at pharmacological doses results in many effects that are beneficial for treating type 2 diabetes, these include: (1) an increase in insulin secretion from β cells; (2) a suppression of glucagon secretion from α cells in the presence of hyperglycemia but not hypoglycemia; (3) a delay in gastric emptying and gut motility which in turns delays absorption of ingested nutrients and dampens post-prandial glucose excursion; and (4) an increase in the duration of postprandial satiety therefore suppressing appetite and decreasing food intake which eventually leads to weight loss. However, GLP-1 is subject to rapid enzymatic degradation, and therefore, not suitable for long-term treatment. A synthetic enzyme-resistant GLP-1 receptor agonist that reproduces the biological effects of GLP-1 is in use and more are under development. This review aims at providing a summary of the properties of GLP-1 and the development of GLP-1-based therapies for treatment of diabetes

    Bioavailable testosterone linearly declines over a wide age spectrum in men and women from the Baltimore longitudinal study of aging

    Get PDF
    Background: Age-related changes in testosterone levels in older persons and especially in women have not been fully explored. The objective of this study was to describe age-related trajectories of total testosterone (TT), ammonium sulfate precipitation-measured bioavailable testosterone (mBT), and sex hormone-binding glycoprotein (SHBG) in men and women from the Baltimore Longitudinal Study of Aging, with special focus on the oldest adults. Methods: Participants included 788 White men and women aged 30-96 years with excellent representation of old and oldest old, who reported not taking medications known to interfere with testosterone. Longitudinal data were included when available. TT, mBT, and SHBG were assayed. Age-related trajectories of mBT were compared with those obtained using calculated bioavailable testosterone (cBT). Generalized least square models were performed to describe age-related trajectories of TT, mBT, and SHBG in men and women. Results: mBT linearly declines over the life span and even at older ages in both sexes. In men, TT remains quite stable until the age of 70 years and then declines at older ages, whereas in women TT progressively declines in premenopausal years and slightly increases at older ages. Differences in age-related trajectories between total and bioavailable testosterone are only partially explained by age changes in SHBG, whose levels increases at accelerated rates in old persons. Noteworthy, although mBT and cBT highly correlated with one another, mBT is a much stronger correlate of chronological age than cBT. Conclusion: In both men and women, mBT linearly declines over the life span and even at old ages. Its relationship with age-related phenotypes should be further investigated

    Circulating Brain-Derived Neurotrophic Factor and Indices of Metabolic and Cardiovascular Health: Data from the Baltimore Longitudinal Study of Aging

    Get PDF
    Besides its well-established role in nerve cell survival and adaptive plasticity, brain-derived neurotrophic factor (BDNF) is also involved in energy homeostasis and cardiovascular regulation. Although BDNF is present in the systemic circulation, it is unknown whether plasma BDNF correlates with circulating markers of dysregulated metabolism and an adverse cardiovascular profile.To determine whether circulating BDNF correlates with indices of metabolic and cardiovascular health, we measured plasma BDNF levels in 496 middle-age and elderly subjects (mean age approximately 70), in the Baltimore Longitudinal Study of Aging. Linear regression analysis revealed that plasma BDNF is associated with risk factors for cardiovascular disease and metabolic syndrome, regardless of age. In females, BDNF was positively correlated with BMI, fat mass, diastolic blood pressure, total cholesterol, and LDL-cholesterol, and inversely correlated with folate. In males, BDNF was positively correlated with diastolic blood pressure, triglycerides, free thiiodo-thyronine (FT3), and bioavailable testosterone, and inversely correlated with sex-hormone binding globulin, and adiponectin.Plasma BDNF significantly correlates with multiple risk factors for metabolic syndrome and cardiovascular dysfunction. Whether BDNF contributes to the pathogenesis of these disorders or functions in adaptive responses to cellular stress (as occurs in the brain) remains to be determined

    Blockade of cannabinoid 1 receptor improves glucose responsiveness in pancreatic beta cells

    Get PDF
    Cannabinoid 1 receptors (CB1Rs) are expressed in peripheral tissues, including islets of Langerhans, where their function(s) is under scrutiny. Using mouse beta-cell lines, human islets and CB1R-null (CB1R(-/-)) mice, we have now investigated the role of CB1Rs in modulating beta-cell function and glucose responsiveness. Synthetic CB1R agonists diminished GLP-1-mediated cAMP accumulation and insulin secretion as well as glucose-stimulated insulin secretion in mouse beta-cell lines and human islets. In addition, silencing CB1R in mouse cells resulted in an increased expression of pro-insulin, glucokinase (GCK) and glucose transporter 2 (GLUT2), but this increase was lost in cells lacking insulin receptor. Furthermore, CB1R(-/-) mice had increased pro-insulin, GCK and GLUT2 expression in cells. Our results suggest that CB1R signalling in pancreatic islets may be harnessed to improve beta-cell glucose responsiveness and preserve their function. Thus, our findings further support that blocking peripheral CB1Rs would be beneficial to beta-cell function in type 2 diabetes

    Chemiluminescence detection with water-soluble iridium(III) complexes containing a sulfonate-functionalised ancillary ligand

    Get PDF
    The chemiluminescence from four cyclometalated iridium(III) complexes containing an ancillary bathophenanthroline-disulfonate ligand exhibited a wide range of emission colours (green to red), and in some cases intensities that are far greater than the commonly employed benchmark reagent, [Ru(bpy)3](2+). A similar complex incorporating a sulfonated triazolylpyridine-based ligand enabled the emission to be shifted into the blue region of the spectrum, but the responses with this complex were relatively poor. DFT calculations of electronic structure and emission spectra support the experimental findings

    SRT1720 improves survival and healthspan of obese mice

    Get PDF
    Sirt1 is an NAD+-dependent deacetylase that extends lifespan in lower organisms and improves metabolism and delays the onset of age-related diseases in mammals. Here we show that SRT1720, a synthetic compound that was identified for its ability to activate Sirt1 in vitro, extends both mean and maximum lifespan of adult mice fed a high-fat diet. This lifespan extension is accompanied by health benefits including reduced liver steatosis, increased insulin sensitivity, enhanced locomotor activity and normalization of gene expression profiles and markers of inflammation and apoptosis, all in the absence of any observable toxicity. Using a conditional SIRT1 knockout mouse and specific gene knockdowns we show SRT1720 affects mitochondrial respiration in a Sirt1- and PGC-1α-dependent manner. These findings indicate that SRT1720 has long-term benefits and demonstrate for the first time the feasibility of designing novel molecules that are safe and effective in promoting longevity and preventing multiple age-related diseases in mammals
    corecore