329 research outputs found
They Don\u27t Understand
Drink, my friend, and no longer will you suffer. Drink till you\u27re drunk; drink till you forget you\u27re a, Navy man; drink the Captain\u27s commands away from your mind. Drink! Drink! Drink
Aftermath
Monday morning when I awoke to find my head still hurting from the blast I had received Sunday, I remembered all too clearly that the Captain had ordered me to go back to the harbor to find the Mass Kit I had dropped during the attack. . As I approached the landing I could hear soft, rhythmic thuds. Looking over to my left, I could see the reason for the noise. Hundreds of sailors with sad, drawn faces were slouching along, their side arms gone and their clothes oil-soaked and torn. The many small boats coming and going were not unusual, but their cargo of dead-tired gobs, stretched every which way in the boats, gave me a chilly feeling
Not Guilty
Second Place, Short Story Division, 1945 Butler Literary Contest
The courtroom was lighted with a bright, blinding flash. The twelve selected ministers of the jury, representing all religious denominations, stared solemnly at the defendant who sat in the seat of judgment. With flrm straight lips but in a manner not Unkind, the foreman arose, and said the jury was ready to hear the evidence. The defendant, a sailor with an oil-soaked uniform that showed spots of blood on his shoulders and chest, stood and faced the jury
Master of Science
thesisWe present a single-station method for the determination of Rayleigh wave ellipticity, or Rayleigh wave horizontal to vertical amplitude ratio (H/V) using Frequency Dependent Polarization Analysis (FDPA). This procedure uses singular value decomposition of 3-by-3 spectral covariance matrices over 1-hr time windows to determine properties of the ambient seismic noise field such as particle motion and dominant wave-type. In FPDA, if the noise is mostly dominated by a primary singular value and the phase difference is roughly 90° between the major horizontal axis and the vertical axis of the corresponding singular vector, we infer that Rayleigh waves are dominant and measure an H/V ratio for that hour and frequency bin. We perform this analysis for all available data from the Earthscope Transportable Array between 2004 and 2014. We compare the observed Rayleigh wave H/V ratios with those previously measured by multicomponent, multistation noise cross-correlation (NCC), as well as classical noise spectrum H/V ratio analysis (NSHV). At 8 sec the results from all three methods agree, suggesting that the ambient seismic noise field is Rayleigh wave dominated. Between 10 and 30 sec, while the general pattern agrees well, the results from FDPA and NSHV are persistently slightly higher (~2%) and significantly higher (>20%), respectively, than results from the array-based NCC. This is likely caused by contamination from other wave types (i.e., Love waves, body waves, and tilt noise) in the single station methods, but it could also reflect a small, persistent error in NCC. Additionally, we find that the single station method has difficulty retrieving robust Rayleigh wave H/V ratios within major sedimentary basins, such as the Williston Basin and Mississippi Embayment, where the noise field is likely dominated by reverberating Love waves
Gender achievement gaps
In American high schools female students put greater effort into school and outperform boys on indicators of academic success. Using data from the High School Longitudinal Study of 2009, we found female students’ greater academic effort and achievement was partly explained by different social incentives to trying hard in school experienced by male and female students. Males were 1.75 times as likely to report they would be unpopular for trying hard in school and 1.50 times as likely to report they would be made fun of for trying hard in school. Social costs to trying hard in school were directly associated with less rigorous mathematics course-taking and indirectly associated with lower GPA in STEM courses through lower academic effort
Electrophysiological effects of 5-hydroxytryptamine on isolated human atrial myocytes, and the influence of chronic beta-adrenoceptor blockade
<b>1.</b> 5-Hydroxytryptamine (5-HT) has been postulated to play a proarrhythmic role in the human atria via stimulation of 5-HT<sub>4</sub> receptors.
<b>2.</b> The aims of this study were to examine the effects of 5-HT on the L-type Ca<sup>2+</sup> current (<i>I</i><sub>CaL</sub>) action potential duration (APD), the effective refractory period (ERP) and arrhythmic activity in human atrial cells, and to assess the effects of prior treatment with β-adrenoceptor antagonists.
<b>3.</b> Isolated myocytes, from the right atrial appendage of 27 consenting patients undergoing cardiac surgery who were in sinus rhythm, were studied using the whole-cell perforated patch-clamp technique at 37ºC.
<b>4.</b> 5-HT (1 n-10 μM) caused a concentration-dependent increase in <i>I</i><sub>CaL</sub>, which was potentiated in cells from β-blocked (maximum response to 5-HT, E<sub>max</sub>=299±12% increase above control) compared to non-β-blocked patients (E<sub>max</sub>=220±6%, P<0.05), but with no change in either the potency (log EC<sub>50</sub>: -7.09±0.07 vs -7.26±0.06) or Hill coefficient (<i>n</i><sub>H</sub>: 1.5±0.6 vs 1.5±0.3) of the 5-HT concentration-response curve.
<b>5.</b> 5-HT (10 μM) produced a greater increase in the APD at 50% repolarisation (APD50) in cells from β-blocked patients (of 37±10 ms, i.e. 589±197%) vs non-β-blocked patients (of 10±4 ms, i.e. 157±54%; P<0.05). Both the APD<sub>90</sub> and the ERP were unaffected by 5-HT.
<b>6.</b> Arrhythmic activity was observed in response to 5-HT in five of 17 cells (29%) studied from β-blocked, compared to zero of 16 cells from the non-β-blocked patients (P<0.05).
<b>7.</b> In summary, the 5-HT-induced increase in calcium current was associated with a prolonged early plateau phase of repolarisation, but not late repolarisation or refractoriness, and the enhancement of these effects by chronic β-adrenoceptor blockade was associated with arrhythmic potential
Salmon Lifecycle Considerations to Guide Stream Management: Examples from California’s Central Valley
A primary goal of the Central Valley Project Improvement Act is to at least double natural production of Chinook salmon (Oncorhynchus tshawytscha), in California Central Valley (CV) streams on a sustainable basis. Achievement relies on restoration actions that involve both discharge (e.g., dam releases) and non-discharge (e.g., gravel augmentation, screening) components. Annual adult and juvenile abundance estimates for individual watersheds must be tracked to assess effectiveness of individual actions. However, to date, no substantial efforts have been taken to demonstrate success or deficiencies of their implementations. A major challenge in interpreting time series of counts at any one life stage is that they reflect the cumulative effects of both freshwater and marine factors over the full life cycle. To address this issue, we developed a conceptual framework based on ratios of the abundance of consecutive CV fall-run Chinook salmon life stages and how variation in these ratios tracks key independent variables during the freshwater portion of the life cycle. Model validation with several case studies shows that estimates of previous stage class production correlate well with estimated individuals produced in the next class, indicating that transition rates tend to vary within a constrained range, and that monitoring programs generate abundance estimates whose errors are small enough not to swamp out the underlying signal. When selected environmental parameters were added to demonstration models, abundance estimates were more closely modeled and several tested relationships between environmental drivers and life-stage transition rates proved consistent across watersheds where data were available. Results from this generalized life-stage conceptual model suggest a potential framework for tracking the success of actions meant to improve survival for a given life stage within an individual stream and for determining how successive stages respond to these changes. Though examples are provided for CV Chinook salmon, these concepts can be applied wherever migratory salmonid populations and associated environmental data are being adequately monitored.
Simulation of Daily and Monthly Stream Discharge from Small Watersheds Using the SWAT Model
The Soil and Water Assessment Tool (SWAT) was evaluated and parameter sensitivities were determined while modeling daily streamflows in a small central Kentucky watershed over a two-year period. Streamflow data from 1996 were used to calibrate the model and streamflow data from 1995 were used for evaluation. The model adequately predicted the trends in daily streamflow during this period although Nash-Sutcliffe R2 values were –0.04 and 0.19 for 1995 and 1996, respectively. The model poorly predicted the timing of some peak flow values and recession rates during the last half of 1995. Excluding daily peak flow values from August to December improved the daily R2 to 0.15, which was similar to the 1996 daily R2 value. The Nash-Sutcliffe R2 for monthly total flows were 0.58 for 1995 and 0.89 for 1996 which were similar to values found in the literature. Since very little information was available on the sensitivity of the SWAT model to various inputs, a sensitivity analysis/calibration procedure was designed to evaluate parameters that were thought to influence stream discharge predictions. These parameters included, drainage area, slope length, channel length, saturated hydraulic conductivity, and available water capacity. Minimization of the average absolute deviation between observed and simulated streamflows identified optimum values/ranges for each parameter. Saturated hydraulic conductivity, alpha baseflow factor, drainage area, channel length, and channel width were the most sensitive parameters in modeling the karst influenced watershed. The sensitivity analysis process confirmed die trace studies in the karst watershed that a much larger area contributes to streamflow than can be described by the topographic boundaries. Overall, the results indicate that the SWAT model can be an effective tool for describing monthly runoff from small watersheds in central Kentucky that have developed on karst hydrology however calibration data are necessary to account for solution channels draining into or out of the topographic watershed
Findings on Summer Learning Loss Often Fail to Replicate, Even in Recent Data
It is widely believed that (1) children lose months of reading and math skills over summer vacation and that (2) inequality in skills grows much faster during summer than during school. Concerns have been raised about the replicability of evidence for these claims, but an impression may exist that nonreplicable findings are limited to older studies. After reviewing the 100-year history of nonreplicable results on summer learning, we compared three recent data sources (ECLS- K:2011, NWEA, and Renaissance) that tracked U.S. elementary students' skills through school years and summers in the 2010s. Most patterns did not generalize beyond a single test. Summer losses looked substantial on some tests but not on others. Score gaps—between schools and students of different income levels, ethnicities, and genders—grew on some tests but not on others. The total variance of scores grew on some tests but not on others. On tests where gaps and variance grew, they did not consistently grow faster during summer than during school. Future research should demonstrate that a summer learning pattern replicates before drawing broad conclusions about learning or inequality
Statistical Procedures for Evaluating Daily and Monthly Hydrologic Model Predictions
The overall study objective was to evaluate the applicability of different qualitative and quantitative methods for comparing daily and monthly SWAT computer model hydrologic streamflow predictions to observed data, and to recommend statistical methods for use in future model evaluations. Statistical methods were tested using daily streamflows and monthly equivalent runoff depths. The statistical techniques included linear regression, Nash-Sutcliffe efficiency, nonparametric tests, t-test, objective functions, autocorrelation, and cross-correlation. None of the methods specifically applied to the non-normal distribution and dependence between data points for the daily predicted and observed data. Of the tested methods, median objective functions, sign test, autocorrelation, and cross-correlation were most applicable for the daily data. The robust coefficient of determination (CD*) and robust modeling efficiency (EF*) objective functions were the preferred methods for daily model results due to the ease of comparing these values with a fixed ideal reference value of one. Predicted and observed monthly totals were more normally distributed, and there was less dependence between individual monthly totals than was observed for the corresponding predicted and observed daily values. More statistical methods were available for comparing SWAT model-predicted and observed monthly totals. The 1995 monthly SWAT model predictions and observed data had a regression Rr2 of 0.70, a Nash-Sutcliffe efficiency of 0.41, and the t-test failed to reject the equal data means hypothesis. The Nash-Sutcliffe coefficient and the Rr2 coefficient were the preferred methods for monthly results due to the ability to compare these coefficients to a set ideal value of one
- …