9 research outputs found

    Seroconversion to Pandemic (H1N1) 2009 Virus and Cross-Reactive Immunity to Other Swine Influenza Viruses

    Get PDF
    To assess herd immunity to swine influenza viruses, we determined antibodies in 28 paired serum samples from participants in a prospective serologic cohort study in Hong Kong who had seroconverted to pandemic (H1N1) 2009 virus. Results indicated that infection with pandemic (H1N1) 2009 broadens cross-reactive immunity to other recent subtype H1 swine viruses

    [pt] ENSAIOS SOBRE A REFORMA PROTESTANTE À LUZ DA TEOLOGIA LUTERANA

    Get PDF
    © 2014 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd. Avian H7N9 influenza viruses may pose a further threat to humans by reassortment with human viruses, which could lead to generation of novel reassortants with enhanced polymerase activity. We previously established a novel statistical approach to study the polymerase activity of reassorted vRNPs (Influenza Other Respir Viruses. 2013;7:969-78). Here, we report the use of this method to study recombinant vRNPs with subunits derived from human H1N1, H3N2, and H7N9 viruses. Our results demonstrate that some reassortant vRNPs with subunits derived from the H7N9 and other human viruses can have much higher polymerase activities than the wild-type levels.Link_to_subscribed_fulltex

    Initial viral load and the outcomes of SARS

    No full text
    BACKGROUND: Severe acute respiratory syndrome (SARS) is caused by a novel coronavirus. It may progress to respiratory failure, and a significant proportion of patients die. Preliminary data suggest that a high viral load of the SARS coronavirus is associated with adverse outcomes in the intensive care unit, but the relation of viral load to survival is unclear. METHODS: We prospectively studied an inception cohort of 133 patients with virologically confirmed SARS who were admitted to 2 general acute care hospitals in Hong Kong from Mar. 24 to May 4, 2003. The patients were followed until death or for a minimum of 90 days. We used Cox proportional hazard modelling to analyze potential predictors of survival recorded at the time of presentation, including viral load from nasopharyngeal specimens (measured by quantitative reverse transcriptase polymerase chain reaction [PCR] of the SARS-associated coronavirus). RESULTS: Thirty-two patients (24.1%) met the criteria for acute respiratory distress syndrome, and 24 patients (18.0%) died. The following baseline factors were independently associated with worse survival: older age (61–80 years) (adjusted hazard ratio [HR] 5.24, 95% confidence interval [CI] 2.03–13.53), presence of an active comorbid condition (adjusted HR 3.36, 95% CI 1.44–7.82) and higher initial viral load of SARS coronavirus, according to quantitative PCR of nasopharyngeal specimens (adjusted HR 1.21 per log(10) increase in number of RNA copies per millilitre, 95% CI 1.06–1.39). INTERPRETATION: We found preliminary evidence that higher initial viral load is independently associated with worse prognosis in SARS. Mortality data for patients with SARS should be interpreted in light of age, comorbidity and viral load. These considerations will be important in future studies of SARS

    Tropism and Innate Host Responses of the 2009 Pandemic H1N1 Influenza Virus in ex Vivo and in Vitro Cultures of Human Conjunctiva and Respiratory Tract

    No full text
    The novel pandemic influenza H1N1 (H1N1pdm) virus of swine origin causes mild disease but occasionally leads to acute respiratory distress syndrome and death. It is important to understand the pathogenesis of this new disease in humans. We compared the virus tropism and host-responses elicited by pandemic H1N1pdm and seasonal H1N1 influenza viruses in ex vivo cultures of human conjunctiva, nasopharynx, bronchus, and lung, as well as in vitro cultures of human nasopharyngeal, bronchial, and alveolar epithelial cells. We found comparable replication and host-responses in seasonal and pandemic H1N1 viruses. However, pandemic H1N1pdm virus differs from seasonal H1N1 influenza virus in its ability to replicate in human conjunctiva, suggesting subtle differences in its receptor-binding profile and highlighting the potential role of the conjunctiva as an additional route of infection with H1N1pdm. A greater viral replication competence in bronchial epithelium at 33°C may also contribute to the slight increase in virulence of the pandemic influenza virus. In contrast with highly pathogenic influenza H5N1 virus, pandemic H1N1pdm does not differ from seasonal influenza virus in its intrinsic capacity for cytokine dysregulation. Collectively, these results suggest that pandemic H1N1pdm virus differs in modest but subtle ways from seasonal H1N1 virus in its intrinsic virulence for humans, which is in accord with the epidemiology of the pandemic to date. These findings are therefore relevant for understanding transmission and therapy
    corecore