42,662 research outputs found

    Quantum vortex dynamics in two-dimensional neutral superfluids

    Full text link
    We derive an effective action for the vortex position degree-of-freedom in a superfluid by integrating out condensate phase and density fluctuation environmental modes. When the quantum dynamics of environmental fluctuations is neglected, we confirm the occurrence of the vortex Magnus force and obtain an expression for the vortex mass. We find that this adiabatic approximation is valid only when the superfluid droplet radius RR, or the typical distance between vortices, is very much larger than the coherence length ξ\xi. We go beyond the adiabatic approximation numerically, accounting for the quantum dynamics of environmental modes and capturing their dissipative coupling to condensate dynamics. For the case of an optical-lattice superfluid we demonstrate that vortex motion damping can be adjusted by tuning the ratio between the tunneling energy JJ and the on-site interaction energy UU. We comment on the possibility of realizing vortex Landau level physics.Comment: 14 pages, 10 figures, accepted by PRA with corrected references and typo

    FOOD AND AGRICULTURE IN THE 1980S: THE IMPLIED RESEARCH PRIORITIES

    Get PDF
    Research and Development/Tech Change/Emerging Technologies,

    MARKET SEGMENTATION: IDENTIFYING THE HIGH-GROWTH EXPORT MARKETS FOR U.S. AGRICULTURE

    Get PDF
    A cluster analysis based on a five-year growth rate of agricultural imports from the United States was conducted on 86 countries and revealed two significant market segments for U.S. agriculture: the high-growth markets and the low-growth markets. Multiple discriminant analysis was then used to test the significance of the countries' trade-related and macroeconomic variables to their market growth classification. The discriminant function was used to predict the high-growth markets for U.S. agriculture in 1994. High-growth markets for U.S. agriculture exhibit faster GDP and agricultural import growth rates, are relatively agriculturally self-sufficient, and are near the United States. On the other hand, low-growth markets exhibit slower GDP and agricultural import growth rates, and are geographically distant from the United States.International Relations/Trade,

    Orbit determination and orbit control for the Earth Observing System (EOS) AM spacecraft

    Get PDF
    Future NASA Earth Observing System (EOS) Spacecraft will make measurements of the earth's clouds, oceans, atmosphere, land and radiation balance. These EOS Spacecraft will be part of the NASA Mission to Planet Earth. This paper specifically addresses the EOS AM Spacecraft, referred to as 'AM' because it has a sun-synchronous orbit with a 10:30 AM descending node. This paper describes the EOS AM Spacecraft mission orbit requirements, orbit determination, orbit control, and navigation system impact on earth based pointing. The EOS AM Spacecraft will be the first spacecraft to use the TDRSS Onboard Navigation System (TONS) as the primary means of navigation. TONS flight software will process one-way forward Doppler measurements taken during scheduled TDRSS contacts. An extended Kalman filter will estimate spacecraft position, velocity, drag coefficient correction, and ultrastable master oscillator frequency bias and drift. The TONS baseline algorithms, software, and hardware implementation are described in this paper. TONS integration into the EOS AM Spacecraft Guidance, Navigation, and Control (GN&C) System; TONS assisted onboard time maintenance; and the TONS Ground Support System (TGSS) are also addressed

    Economical genotyping of little blue penguin (Eudyptula minor) clades from feather-based DNA

    Get PDF
    Determination of clade membership is a crucial requirement for many research questions addressing phylogeography, population structure, mating patterns, speciation, and hybridisation. The little blue penguin (Eudyptula minor) can be separated into two deeply divergent clades. However, assigning clade membership in little blue penguins requires molecular methods. Genetic sequencing can be used to identify clade membership but is expensive. Here, we present an economical alternative to the use of sequencing to determine little blue penguin clade membership. We extracted DNA from feathers using a method that produced reasonable quantities of DNA. We then amplified the D-loop section of the mitochondrial control region from total genomic DNA extracts, using the primers 'C L-tRNAglu' and 'D H-Dbox' followed by digestion with the restriction enzyme AluI. When visualised on a gel, distinctive banding patterns clearly indicated clade membership. We sequenced a subset of our samples and verified the accuracy of this method. The methods we present should facilitate little blue penguin research through a cost-effective approach to clade analysis as well as a successful technique to extract DNA from feathers when blood or tissue samples are not available

    Viscous to Inertial Crossover in Liquid Drop Coalescence

    Full text link
    Using an electrical method and high-speed imaging we probe drop coalescence down to 10 ns after the drops touch. By varying the liquid viscosity over two decades, we conclude that at sufficiently low approach velocity where deformation is not present, the drops coalesce with an unexpectedly late crossover time between a regime dominated by viscous and one dominated by inertial effects. We argue that the late crossover, not accounted for in the theory, can be explained by an appropriate choice of length-scales present in the flow geometry.Comment: 4 pages, 4 figure

    Multiple transient memories in sheared suspensions: robustness, structure, and routes to plasticity

    Get PDF
    Multiple transient memories, originally discovered in charge-density-wave conductors, are a remarkable and initially counterintuitive example of how a system can store information about its driving. In this class of memories, a system can learn multiple driving inputs, nearly all of which are eventually forgotten despite their continual input. If sufficient noise is present, the system regains plasticity so that it can continue to learn new memories indefinitely. Recently, Keim & Nagel showed how multiple transient memories could be generalized to a generic driven disordered system with noise, giving as an example simulations of a simple model of a sheared non-Brownian suspension. Here, we further explore simulation models of suspensions under cyclic shear, focussing on three main themes: robustness, structure, and overdriving. We show that multiple transient memories are a robust feature independent of many details of the model. The steady-state spatial distribution of the particles is sensitive to the driving algorithm; nonetheless, the memory formation is independent of such a change in particle correlations. Finally, we demonstrate that overdriving provides another means for controlling memory formation and retention

    Multiple transient memories in experiments on sheared non-Brownian suspensions

    Get PDF
    A system with multiple transient memories can remember a set of inputs but subsequently forgets almost all of them, even as they are continually applied. If noise is added, the system can store all memories indefinitely. The phenomenon has recently been predicted for cyclically sheared non-Brownian suspensions. Here we present experiments on such suspensions, finding behavior consistent with multiple transient memories and showing how memories can be stabilized by noise.Comment: 5 pages, 4 figure
    corecore