4 research outputs found

    Multimethod Investigation of the Neurobiological Basis of ADHD Symptomatology in Children Aged 9-10: Baseline Data from the ABCD Study

    No full text
    Attention deficit/hyperactivity disorder is associated with numerous neurocognitive deficits including poor working memory and difficulty inhibiting undesirable behaviors that cause academic and behavioral problems in children. Prior work has attempted to determine how these differences are instantiated in the structure and function of the brain, but much of that work has been done in small samples, focused on older adolescents or adults, and used statistical approaches that were not robust to model overfitting. The current study used cross-validated elastic net regression to predict a continuous measure of ADHD symptomatology using brain morphometry and activation during tasks of working memory, inhibitory control, and reward processing, with separate models for each MRI measure. The best model using activation during the working memory task to predict ADHD symptomatology had an out-of-sample R2 = 2% and was robust to residualizing the effects of age, sex, race, parental income and education, handedness, pubertal status, and internalizing symptoms from ADHD symptomatology. This model used reduced activation in task positive regions and reduced deactivation in task negative regions to predict ADHD symptomatology. The best model with morphometry alone predicted ADHD symptomatology with an R2 = 1% but this effect dissipated when including covariates. The inhibitory control and reward tasks did not yield generalizable models. In summary, these analyses show, with a large and well-characterized sample, that the brain correlates of ADHD symptomatology are modest in effect size and captured best by brain morphometry and activation during a working memory task

    Passive Sensing of Preteens’ Smartphone Use: An Adolescent Brain Cognitive Development (ABCD) Cohort Substudy

    No full text
    BackgroundConcerns abound regarding childhood smartphone use, but studies to date have largely relied on self-reported screen use. Self-reporting of screen use is known to be misreported by pediatric samples and their parents, limiting the accurate determination of the impact of screen use on social, emotional, and cognitive development. Thus, a more passive, objective measurement of smartphone screen use among children is needed. ObjectiveThis study aims to passively sense smartphone screen use by time and types of apps used in a pilot sample of children and to assess the feasibility of passive sensing in a larger longitudinal sample. MethodsThe Adolescent Brain Cognitive Development (ABCD) study used passive, objective phone app methods for assessing smartphone screen use over 4 weeks in 2019-2020 in a subsample of 67 participants (aged 11-12 years; 31/67, 46% female; 23/67, 34% White). Children and their parents both reported average smartphone screen use before and after the study period, and they completed a questionnaire regarding the acceptability of the study protocol. Descriptive statistics for smartphone screen use, app use, and protocol feasibility and acceptability were reviewed. Analyses of variance were run to assess differences in categorical app use by demographics. Self-report and parent report were correlated with passive sensing data. ResultsSelf-report of smartphone screen use was partly consistent with objective measurement (r=0.49), although objective data indicated that children used their phones more than they reported. Passive sensing revealed the most common types of apps used were for streaming (mean 1 hour 57 minutes per day, SD 1 hour 32 minutes), communication (mean 48 minutes per day, SD 1 hour 17 minutes), gaming (mean 41 minutes per day, SD 41 minutes), and social media (mean 36 minutes per day, SD 1 hour 7 minutes). Passive sensing of smartphone screen use was generally acceptable to children (43/62, 69%) and parents (53/62, 85%). ConclusionsThe results of passive, objective sensing suggest that children use their phones more than they self-report. Therefore, use of more robust methods for objective data collection is necessary and feasible in pediatric samples. These data may then more accurately reflect the impact of smartphone screen use on behavioral and emotional functioning. Accordingly, the ABCD study is implementing a passive sensing protocol in the full ABCD cohort. Taken together, passive assessment with a phone app provided objective, low-burden, novel, informative data about preteen smartphone screen use

    Recommendations for Identifying Valid Wear for Consumer-Level Wrist-Worn Activity Trackers and Acceptability of Extended Device Deployment in Children

    Get PDF
    Background: Self-reported physical activity is often inaccurate. Wearable devices utilizing multiple sensors are now widespread. The aim of this study was to determine acceptability of Fitbit Charge HR for children and their families, and to determine best practices for processing its objective data. Methods: Data were collected via Fitbit Charge HR continuously over the course of 3 weeks. Questionnaires were given to each child and their parent/guardian to determine the perceived usability of the device. Patterns of data were evaluated and best practice inclusion criteria recommended. Results: Best practices were established to extract, filter, and process data to evaluate device wear, r and establish minimum wear time to evaluate behavioral patterns. This resulted in usable data available from 137 (89%) of the sample. Conclusions: Activity trackers are highly acceptable in the target population and can provide objective data over longer periods of wear. Best practice inclusion protocols that reflect physical activity in youth are provided
    corecore