8,454 research outputs found

    Anti-EGFR Therapy: Mechanism and Advances in Clinical Efficacy in Breast Cancer

    Get PDF
    This review will focus on recent advances in the application of antiepidermal growth factor receptor (anti-EGFR) for the treatment of breast cancer. The choice of EGFR, a member of the ErbB tyrosine kinase receptor family, stems from evidence pinpointing its role in various anti-EGFR therapies. Therefore, an increase in our understanding of EGFR mechanism and signaling might reveal novel targets amenable to intervention in the clinic. This knowledge base might also improve existing medical treatment options and identify research gaps in the design of new therapeutic agents. While the approved use of drugs like the dual kinase inhibitor Lapatinib represents significant advances in the clinical management of breast cancer, confirmatory studies must be considered to foster the use of anti-EGFR therapies including safety, pharmacokinetics, and clinical efficacy

    c-Myc Metabolic Addiction in Cancers Counteracted by Resveratrol and NQO2

    Get PDF
    Transcription factor c-myc is frequently amplified/overexpressed in human cancers. One event c-myc controls is metabolic reprogramming or the addiction for glucose and/or glutamine as nutrients. Rewiring of metabolic circuitry provides cancer cells with a gain-of-survival advantage. Accordingly, the aversion of two types of oncogenic-distinct metabolic addictions via c-myc control offers an anti-tumorigenic approach. Resveratrol reportedly inhibits the uptake/transport of glucose or glutamine and reduces c-myc expression in cancer cells. Whether c-myc control by resveratrol involves quinone reductase NQO2 is unknown. NQO2 expressing (shRNA08) and knockdown (shRNA25) CWR22Rv1 prostate cancer cells were generated and used to study the role of NQO2 in growth and cell cycle control. Immunoblot analyses were used to evaluate the changes of cell cycle-associated proteins. NQO2 in mediating degradation of cyclin D1 via AKT/GSK-3β by resveratrol was tested by determining AKT and chymotrypsin-like proteasome activities. Molecular modeling and pull-down/deletion assays were used to evaluate the interaction between NQO2 and AKT. Resveratrol interacts with NQO2, a quinone reductase that plays a key role in resveratrol-induced AKT/GSK3β-mediated degradation of cyclin D1. In this chapter, we unravel control of expression and stability of c-myc by the resveratrol-NQO2 axis as an approach to overcome c-myc-mediated metabolic reprogramming

    A MicroRNA-1280/JAG2 Network Comprises a Novel Biological Target in High-Risk Medulloblastoma

    Get PDF
    Over-expression of PDGF receptors (PDGFRs) has been previously implicated in high-risk medulloblastoma (MB) pathogenesis. However, the exact biological functions of PDGFRα and PDGFRβ signaling in MB biology remain poorly understood. Here, we report the subgroup specific expression of PDGFRα and PDGFRβ and their associated biological pathways in MB tumors. c-MYC, a downstream target of PDGFRβ but not PDGFRα, is involved in PDGFRβ signaling associated with cell proliferation, cell death, and invasion. Concurrent inhibition of PDGFRβ and c-MYC blocks MB cell proliferation and migration synergistically. Integrated analysis of miRNA and miRNA targets regulated by both PDGFRβ and c-MYC reveals that increased expression of JAG2, a target of miR-1280, is associated with high metastatic dissemination at diagnosis and a poor outcome in MB patients. Our study may resolve the controversy on the role of PDGFRs in MB and unveils JAG2 as a key downstream effector of a PDGFRβ-driven signaling cascade and a potential therapeutic target
    corecore