5 research outputs found

    Dilution testing using rapid diagnostic tests in a HIV diagnostic algorithm: a novel alternative for confirmation testing in resource limited settings.

    Get PDF
    BACKGROUND: Current WHO testing guidelines for resource limited settings diagnose HIV on the basis of screening tests without a confirmation test due to cost constraints. This leads to a potential risk of false positive HIV diagnosis. In this paper, we evaluate the dilution test, a novel method for confirmation testing, which is simple, rapid, and low cost. The principle of the dilution test is to alter the sensitivity of a rapid diagnostic test (RDT) by dilution of the sample, in order to screen out the cross reacting antibodies responsible for falsely positive RDT results. METHODS: Participants were recruited from two testing centres in Ethiopia where a tiebreaker algorithm using 3 different RDTs in series is used to diagnose HIV. All samples positive on the initial screening RDT and every 10th negative sample underwent testing with the gold standard and dilution test. Dilution testing was performed using Determine™ rapid diagnostic test at 6 different dilutions. Results were compared to the gold standard of Western Blot; where Western Blot was indeterminate, PCR testing determined the final result. RESULTS: 2895 samples were recruited to the study. 247 were positive for a prevalence of 8.5 % (247/2895). A total of 495 samples underwent dilution testing. The RDT diagnostic algorithm misclassified 18 samples as positive. Dilution at the level of 1/160 was able to correctly identify all these 18 false positives, but at a cost of a single false negative result (sensitivity 99.6 %, 95 % CI 97.8-100; specificity 100 %, 95 % CI: 98.5-100). Concordance between the gold standard and the 1/160 dilution strength was 99.8 %. CONCLUSION: This study provides proof of concept for a new, low cost method of confirming HIV diagnosis in resource-limited settings. It has potential for use as a supplementary test in a confirmatory algorithm, whereby double positive RDT results undergo dilution testing, with positive results confirming HIV infection. Negative results require nucleic acid testing to rule out false negative results due to seroconversion or misclassification by the lower sensitivity dilution test. Further research is needed to determine if these results can be replicated in other settings. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01716299

    The Evaluation of a Rapid In Situ HIV Confirmation Test in a Programme with a High Failure Rate of the WHO HIV Two-Test Diagnostic Algorithm

    Get PDF
    BACKGROUND: Concerns about false-positive HIV results led to a review of testing procedures used in a Médecins Sans Frontières (MSF) HIV programme in Bukavu, eastern Democratic Republic of Congo. In addition to the WHO HIV rapid diagnostic test algorithm (RDT) (two positive RDTs alone for HIV diagnosis) used in voluntary counselling and testing (VCT) sites we evaluated in situ a practical field-based confirmation test against western blot WB. In addition, we aimed to determine the false-positive rate of the WHO two-test algorithm compared with our adapted protocol including confirmation testing, and whether weakly reactive compared with strongly reactive rapid test results were more likely to be false positives. METHODOLOGY/PRINCIPAL FINDINGS: 2864 clients presenting to MSF VCT centres in Bukavu during January to May 2006 were tested using Determine HIV-1/2 and UniGold HIV rapid tests in parallel by nurse counsellors. Plasma samples on 229 clients confirmed as double RDT positive by laboratory retesting were further tested using both WB and the Orgenics Immunocomb Combfirm HIV confirmation test (OIC-HIV). Of these, 24 samples were negative or indeterminate by WB representing a false-positive rate of the WHO two-test algorithm of 10.5% (95%CI 6.6-15.2). 17 of the 229 samples were weakly positive on rapid testing and all were negative or indeterminate by WB. The false-positive rate fell to 3.3% (95%CI 1.3-6.7) when only strong-positive rapid test results were considered. Agreement between OIC-HIV and WB was 99.1% (95%CI 96.9-99.9%) with no false OIC-HIV positives if stringent criteria for positive OIC-HIV diagnoses were used. CONCLUSIONS: The WHO HIV two-test diagnostic algorithm produced an unacceptably high level of false-positive diagnoses in our setting, especially if results were weakly positive. The most probable causes of the false-positive results were serological cross-reactivity or non-specific immune reactivity. Our findings show that the OIC-HIV confirmation test is practical and effective in field contexts. We propose that all double-positive HIV RDT samples should undergo further testing to confirm HIV seropositivity until the accuracy of the RDT testing algorithm has been established at programme level

    Analysis of double-positive rapid test results by enzyme immunoassay (OIC-HIV) and western blot (WB) banding pattern

    No full text
    <p>D+<sup>s</sup> =  Determine HIV-1/2® strong-positive. D+<sup>w</sup> =  Determine HIV-1/2® weak-positive. U+<sup>s</sup> =  UniGold HIV® strong-positive. U+<sup>w</sup> =  UniGold HIV® weak-positive. POS = positive. NEG =  negative. IND =  indeterminate.</p>1<p>The discrepancy between banding patterns in OIC-HIV and WB may have been caused by either laboratory/clerical error, or different patterns of cross-reactivity between the two tests.</p>2<p>Using Centers for Disease Control criteria <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0004351#pone.0004351-Centers1" target="_blank">[13]</a>.</p>3<p>Using the manufacturer's interpretation.</p
    corecore