14 research outputs found

    Minor changes in core temperature prior to cardiac arrest influence outcomes: an experimental study

    No full text
    Aim: To investigate whether slight variations in core temperature prior to cardiac arrest (CA) influence short-term outcomes and mitochondrial functions.Methods and Materials: Three groups of New Zealand White rabbits (n = 12/group) were submitted to 15 minutes of CA at 38 degrees C (T-38 group), 39 degrees C (T-39), or 40 degrees C (T 40) and 120 minutes of reperfusion. A Sham-operated group (n = 6) underwent only surgery. Restoration of spontaneous circulation (ROSC), survival, hemodynamics, and pupillary reactivity were recorded. Animals surviving to the end of the observation period were euthanized to assess fresh brain and heart mitochondrial functions (permeability transition and oxidative phosphorylation). Markers of brain and heart damages were also measured.Results: The duration of asphyxia required to induce CA was significantly lower in the T-40 group when compared to the T-38 group (P 80% in all groups (P = nonsignificant [ns]). Survival significantly differed among the T-38, T-39, and T-40 groups: 10 (83%) of 12, 7 (58%) of 12, and 4 (33%) of 12, respectively (log-rank test, P = .027). At the end of the protocol, none of the animals in the T-40 group had pupillary reflexes compared to 8 (67%) of 12 in the T-38 group (P < .05). Troponin and protein S100B were significantly higher in the T-40 versus T-38 group (P < .05). Cardiac arrest significantly impaired both inner mitochondrial membrane integrity and oxidative phosphorylation in all groups. Brain mitochondria disorders were significantly more severe in the T-40 group compared to the T-38 group (P < .05).Conclusion: Small changes in body temperature prior to asphyxial CA significantly influence brain mitochondrial functions and short-term outcomes in rabbits

    Quantitative stiffness assessment of cardiac grafts using ultrasound in a porcine model: A tissue biomarker for heart transplantation

    Get PDF
    International audienceBackground Heart transplantation is the definitive treatment for many cardiovascular diseases. However, no ideal approach is established to evaluate heart grafts and it mostly relies on qualitative interpretation of surgeon based on the organ aspect including anatomy, color and manual palpation. In this study we propose to assess quantitatively the Shear Wave Velocity (SWV) using ultrasound as a biomarker of cardiac viability on a porcine model. Methods The SWV was assessed quantitatively using a clinical ultrasound elastography device (Aixplorer, Supersonics Imagine, France) linked to a robotic motorized arm (UR3, Universal Robots, Denmark) and the elastic anisotropy was obtained using a custom ultrasound research system. SWV was evaluated as function of time in two porcine heart model during 20h at controlled temperature (4°C). One control group (N = 8) with the heart removed and arrested by cold cardioplegia and immerged in a preservation solution. One ischemic group (N = 6) with the organ harvested after 30 min of in situ warm ischemia, to mimic a donation after cardiac death. Hearts graft were revived at two preservation times, at 4 h (N = 11) and 20 h (N = 10) and the parameters of the cardiac function evaluated. Findings On control hearts, SWV remained unchanged during the 4h of preservation. SWV increased significantly between 4 and 20h. For the ischemic group, SWV was found higher after 4h (3.04 +/-0.69 vs 1.69+/-0.19 m/s, p = 0.007) and 20h (4.77+/-1.22 m/s vs 3.40+/-0.75 m/s, p = 0.034) of preservation with significant differences. A good correlation between SWV and cardiac function index was found (r 2 =0.88) and manual palpation score (r 2 =0.81). Interpretation Myocardial stiffness increase was quantified as a function of preservation time and harvesting conditions. The correlation between SWV and cardiac function index suggests that SWV could be used as a marker of graft viability. This technique may be transposed to clinical transplantation for assessing the graft viability during transplantation process

    Mitochondrial permeability transition in cardiomyocyte apoptosis during acute graft rejection

    No full text
    International audienceEvidence indicates that acute cardiac graft rejection is associated with cardiomyocyte apoptosis. Mitochondrial permeability transition (MPT) induces apoptotic cell death. We sought to determine whether MPT might play a role in cardiomyocyte apoptosis in the rat model of heterotopic cardiac transplantation. Syngenic and allogenic transplantations were performed, and both native and grafted hearts were harvested 3 or 5 d after transplantation for detection of acute rejection, assessment of Ca2+-induced MPT, and myocardial apoptosis by TUNEL staining and caspase 3 activity. Allogenic grafts developed severe acute rejection at day 5 with concomitant cardiomyocyte apoptosis (apoptotic index: 7.1 +/- 1.0% vs. 1.0 +/- 0.2% in syngenic hearts, and caspase 3 activity: 38 +/- 25 vs. 5 +/- 9 nmol/mg, in allogenic vs. syngenic grafts, respectively). At day 5, Ca2+-induced MPT was dramatically altered in allogenic when compared with syngenic grafts (mean Ca2+ overload averaged 0 +/- 20 vs. 280 +/- 30 muM in allogenic and syngenic grafts, respectively). NIM811, a nonimmunosuppressive derivative of cyclosporin A (CsA), that specifically inhibits the MPT pore, did not alter acute rejection, but significantly delayed Ca2+-induced MPT pore opening, attenuated caspase 3 activity and cardiomyocyte apoptosis in allogenic grafts. This suggests that mitochondrial permeability transition pore opening may play an important role in cardiomyocyte apoptosis associated with acute cardiac graft rejection

    Preconditioning delays Ca2+-induced mitochondrial permeability transition

    No full text
    International audienceObjective: We investigated whether ischemic preconditioning (PC) may modify mitochondrial permeability transition (MPT) pore opening. Methods: In protocol 1, New Zealand White rabbits underwent either no intervention (sham group) or 10 min of ischemia followed by 5 min of reperfusion, preceded (PC) or not (C; control) by one episode of 5 min of ischemia and 5 min of reperfusion. Rabbits were pretreated. by either saline or the MPT pore inhibitor cyclosporin A (CsA), or its non-immunosuppressive derivative Cs29 (10 mg/kg, IV bolus). Hearts were harvested and mitochondria isolated for further assessment of Ca2+-induced MPT using a Ca2+-sensitive micro-electrode. In protocol 2, C and PC hearts underwent 30 min of ischemia and 4 h of reperfusion. They were pretreated either by saline, CsA or Cs29, as in protocol 1. Infarct size was assessed by triphenyltetrazolium, and apoptosis by TUNEL staining. Results: In protocol 1, the Ca2+ overload required to induce MPT pore opening was significantly higher in PC than in C hearts. CsA and Cs29 significantly increased the Ca2+ overload required for MPT pore opening. In protocol 2, mean infarct size averaged 25% of the risk region in CsA/Cs29 treated hearts versus 15% in PC and 55% in controls (P<0.05 vs. C, P = ns vs. PC). Cardiomyocyte apoptosis was significantly reduced by PC and cyclosporin treatment with a mean apoptotic index of less than 2% in either group versus more than 11% in controls. Conclusion: This suggests that delayed opening of MPT pore may play a major role in ischemic PC
    corecore