274 research outputs found

    Single crystals with internal doping with laser ions prepared by a hydrothermal method

    Get PDF
    Single heterogeneous crystals are described that contain multiple regimes, adjacent regimes varying from one another with regard to function. Also disclosed is a hydrothermal epitaxial growth process that can be utilized to form the single heterogeneous crystals. The single heterogeneous crystals can exhibit enhanced performance when used as a laser gain medium as compared to previously known single crystals and multi-crystal constructs. The heterogeneous single crystal can be utilized for thin disk lasers and can minimize the thermal distortion effects at high powers. The heterogeneous crystal can also serve as an embedded waveguide

    Hydrothermal Growth of Heterogenous Single Crystals Exhibiting Amplified Spontaneous Emission Suppression

    Get PDF
    Single crystals are described that contain several regimes within the crystal that perform different functions related to the enhanced performance of a laser gain medium. At least one regime of the single crystals can be utilized to suppress amplified spontaneous emission and parasitic oscillation in a laser gain medium. A single crystal can include core and cladding regions, the cladding region providing amplified spontaneous emission suppression. The core region of the crystal can include as dopant one or more ions that take part in the lasing when suitably pumped. The amplified spontaneous emission suppression region can include as dopant one or more ions that can prevent additional spontaneous emission that can to depletion of the upper laser states, thus reducing laser performance including one or more ions that absorb spontaneously emitted photons and/or a higher concentration of the active lasing ions of the core

    Hydrothermal Method for Preparing Large Single Crystals of Scandium, Yttrium, and Lanthanide Sesquioxides

    Get PDF
    Scandium, yttrium, and lanthanide sesquioxide crystals having the formula Ln.sub.2O.sub.3, wherein Ln is selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, with or without an activator ion, are made by a hydrothermal method for a variety of end-use applications

    Rhombohedral fluoroberyllium borate crystals and hydrothermal growth thereof for use in laser and non-linear optical applications and devices

    Get PDF
    Single, acentric, rhombohedral, fluoroberyllium borate crystals of a size sufficient for use in a variety of laser and non-optical applications are formed by a hydrothermal method

    Method for forming heterogeneous single garnet based crystals for passive Q-switched lasers and microlasers

    Get PDF
    Disclosed are heterogeneous crystals for use in a laser cavity and methods of forming the crystals. A crystal can be a monolithic crystal containing a garnet-based activator region and a garnet-based Q-switch. Disclosed methods include hydrothermal growth techniques for the growth of differing epitaxial layers on a host. A YAG host material can be doped in one region with a suitable activator ion for lasing and can be formed with another region that is doped with a saturable absorber to form the Q-switch. Regions can be formed with controlled thickness in conjunction. Following formation, a heterogeneous crystal can be cut, polished and coated with mirror films at each end for use in a laser cavity to provide short pulses of high power emissions using high frequency pulse modes

    Heterogeneous single vanadate based crystals for Q-switched lasers and microlasers and method for forming same

    Get PDF
    Disclosed are heterogeneous crystals for use in a laser cavity and methods of forming the crystals. A crystal can be a monolithic crystal containing a vanadate-based activator region and a vanadate-based Q-switch. Disclosed methods include hydrothermal growth techniques for the growth of differing layers on a host. A YVO4 host material can be doped in one region with a suitable active lasing ion and can be formed with another region that is doped with a saturable absorber. Regions can be formed with controlled thickness. Following formation, a heterogeneous crystal can be cut, polished and coated with mirror films at each end for use in a laser cavity to provide short pulses of high power emissions using high frequency pulse modes

    Hydrothermal Growth of Heterogeneous Single Crystals for Solid State Laser Applications

    Get PDF
    Disclosed are heterogeneous crystals for use in a laser cavity and methods of forming the crystals. A crystal can be a monolithic crystal containing regions that are based upon the same host material but differ from one another according to some material feature such that they can perform various functions related to lasing. Disclosed methods include hydrothermal growth techniques for the growth of differing epitaxial layers on a host. A host material can be doped in one region with a suitable active lasing ion and can be formed with another region that is undoped and can act as an endcap, a waveguide cladding layer, or a substrate to provide strength and/or contact to a heat sink. Regions can be formed with controlled thickness in conjunction. Following formation, a heterogeneous crystal can be cut, polished and coated with mirror films at each end for use in a laser cavity

    Hydro­thermally synthesized α-Ba2P2O7

    Get PDF
    Single crystals of α-Ba2P2O7, dibarium diphosphate, were obtained under hydro­thermal conditions. The structure belongs to the diphosphate A 2P2O7 series with A being an alkaline earth cation. α-Ba2P2O7 crystallizes isotypically with α-Sr2P2O7. All atomic sites have site symmetry m with the exception of two O atoms which reside on general positions. Both Ba2+ cations are coordinated by nine terminal O atoms from eclipsed diphosphate P2O7 anions to form a three-dimensional network throughout the structure
    • …
    corecore