3,339 research outputs found

    Real-Time Predictive Modeling and Robust Avoidance of Pedestrians with Uncertain, Changing Intentions

    Full text link
    To plan safe trajectories in urban environments, autonomous vehicles must be able to quickly assess the future intentions of dynamic agents. Pedestrians are particularly challenging to model, as their motion patterns are often uncertain and/or unknown a priori. This paper presents a novel changepoint detection and clustering algorithm that, when coupled with offline unsupervised learning of a Gaussian process mixture model (DPGP), enables quick detection of changes in intent and online learning of motion patterns not seen in prior training data. The resulting long-term movement predictions demonstrate improved accuracy relative to offline learning alone, in terms of both intent and trajectory prediction. By embedding these predictions within a chance-constrained motion planner, trajectories which are probabilistically safe to pedestrian motions can be identified in real-time. Hardware experiments demonstrate that this approach can accurately predict pedestrian motion patterns from onboard sensor/perception data and facilitate robust navigation within a dynamic environment.Comment: Submitted to 2014 International Workshop on the Algorithmic Foundations of Robotic

    Moduli Redefinitions and Moduli Stabilisation

    Full text link
    Field redefinitions occur in string compactifications at the one loop level. We review arguments for why such redefinitions occur and study their effect on moduli stabilisation and supersymmetry breaking in the LARGE volume scenario. For small moduli, although the effect of such redefinitions can be larger than that of the α\alpha' corrections in both the K\"ahler and scalar potentials, they do not alter the structure of the scalar potential. For the less well motivated case of large moduli, the redefinitions can dominate all other terms in the scalar potential. We also study the effect of redefinitions on the structure of supersymmetry breaking and soft terms.Comment: 21 pages, 3 figures; v2. references adde

    Compact F-theory GUTs with U(1)_PQ

    Get PDF
    We construct semi-local and global realizations of SU(5) GUTs in F-theory that utilize a U(1)_PQ symmetry to protect against dimension four proton decay. Symmetries of this type, which assign charges to H_u and H_d that forbid a tree level \mu term, play an important role in scenarios for neutrino physics and gauge mediation that have been proposed in local F-theory model building. As demonstrated in arXiv:0906.4672, the presence of such a symmetry implies the existence of non-GUT exotics in the spectrum, when hypercharge flux is used to break the GUT group and to give rise to doublet-triplet splitting. These exotics are of precisely the right type to solve the unification problem in such F-theory models and might also comprise a non-standard messenger sector for gauge mediation. We present a detailed description of models with U(1)_PQ in the semi-local regime, which does not depend on details of any specific Calabi-Yau four-fold, and then specialize to the geometry of arXiv:0904.3932 to construct three-generation examples with the minimal allowed number of non-GUT exotics. Among these, we find a handful of models in which the D3-tadpole constraint can be satisfied without requiring the introduction of anti-D3-branes. Finally, because SU(5) singlets that carry U(1)_PQ charge may serve as candidate right-handed neutrinos or can be used to lift the exotics, we study their origin in compact models and motivate a conjecture for how to count their zero modes in a semi-local setting.Comment: 73 pages, 5 figures, v2: minor corrections to 4.3 and 6.3.1, reference adde

    Superpotential de-sequestering in string models

    Full text link
    Non-perturbative superpotential cross-couplings between visible sector matter and K\"ahler moduli can lead to significant flavour-changing neutral currents in compactifications of type IIB string theory. Here, we compute corrections to Yukawa couplings in orbifold models with chiral matter localised on D3-branes and non-perturbative effects on distant D7-branes. By evaluating a threshold correction to the D7-brane gauge coupling, we determine conditions under which the non-perturbative corrections to the Yukawa couplings appear. The flavour structure of the induced Yukawa coupling generically fails to be aligned with the tree-flavour structure. We check our results by also evaluating a correlation function of two D7-brane gauginos and a D3-brane Yukawa coupling. Finally, by calculating a string amplitude between n hidden scalars and visible matter we show how non-vanishing vacuum expectation values of distant D7-brane scalars, if present, may correct visible Yukawa couplings with a flavour structure that differs from the tree-level flavour structure.Comment: 37 pages + appendices, 8 figure

    Moduli-Induced Vacuum Destabilisation

    Full text link
    We look for ways to destabilise the vacuum. We describe how dense matter environments source a contribution to moduli potentials and analyse the conditions required to initiate either decompactification or a local shift in moduli vevs. We consider astrophysical objects such as neutron stars as well as cosmological and black hole singularities. Regrettably neutron stars cannot destabilise realistic Planck coupled moduli, which would require objects many orders of magnitude denser. However gravitational collapse, either in matter-dominated universes or in black hole formation, inevitably leads to a destabilisation of the compact volume causing a super-inflationary expansion of the extra dimensions.Comment: 21 pages, 12 figure

    Engaging national organizations for knowledge translation: Comparative case studies in knowledge value mapping

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Government sponsors of research and development, along with their funded investigators, are increasingly tasked with demonstrating evidence of knowledge use by nontraditional audiences. This requires efforts to translate their findings for effective communication. For technology-related knowledge, these audiences include clinicians, consumers, manufacturers, public policy agencies, and knowledge brokers. One potentially efficient approach is to communicate research findings through relevant national organizations. However, this requires an understanding of how such organizations view and treat research knowledge, which can be determined through knowledge-value mapping. Do knowledge values differ between national organizations representing different audiences? Can a deeper understanding of knowledge values help sponsors, investigators, and organizations better communicate research findings to stakeholders?</p> <p>Methods</p> <p>A series of comparative case studies on knowledge-value mapping were derived through interviews with spokespersons for six national organizations. The semi-structured interviews followed a 10-item questionnaire to characterize different ways in which each organization engages with research-based knowledge. Each participating organization represents a particular stakeholder group, while all share a common interest in the research subject matter.</p> <p>Results</p> <p>Each national organization considers the value of the research knowledge in the context of their organization's mission and the interests of their members. All are interested in collaborating with researchers to share relevant findings, while they vary along the following dimensions of knowledge engagement: create, identify, translate, adapt, communicate, use, promote, absorptive capacity, and recommendations for facilitation.</p> <p>Conclusions</p> <p>The principles of knowledge translation suggest that investigators can increase use by tailoring the format and context of their findings to the absorptive capacity of nonscholars. Greater absorption should result in higher levels of knowledge awareness, interest, and use, which can then be documented. National organizations and their members, in turn, can strive to optimize their absorptive capacities regarding the state of the sciences. This combination will ensure the highest possible return on public investment in research activities. This knowledge-value mapping study concludes that national organizations are appropriate channels for communicating research findings and for meeting statutory requirements and general expectations for generating and documenting knowledge use.</p

    Efficacy of personalized cognitive counseling in men of color who have sex with men: secondary data analysis from a controlled intervention trial.

    Get PDF
    In a previous report, we demonstrated the efficacy of a cognitively based counseling intervention compared to standard counseling at reducing episodes of unprotected anal intercourse (UAI) among men who have sex with men (MSM) seeking HIV testing. Given the limited number of efficacious prevention interventions for MSM of color (MOC) available, we analyzed the data stratified into MOC and whites. The sample included 196 white MSM and 109 MOC (23 African Americans, 36 Latinos, 22 Asians, eight Alaskan Natives/Native Americans/Hawaiian/Pacific Islander, and 20 of mixed or other unspecified race). Among MOC in the intervention group, the mean number of episodes of UAI declined from 5.1 to 1.6 at six months and was stable at 12 months (1.8). Among the MOC receiving standard counseling, the mean number of UAI episodes was 4.2 at baseline, 3.9 at six months and 2.1 at 12 months. There was a significant treatment effect overall (relative risk 0.59, 95% confidence interval 0.35-0.998). These results suggest that the intervention is effective in MOC

    Developing and assessing a new web-based tapping test for measuring distal movement in Parkinson's disease: a Distal Finger Tapping test

    Get PDF
    Disability in Parkinson's disease (PD) is measured by standardised scales including the MDS-UPDRS, which are subject to high inter and intra-rater variability and fail to capture subtle motor impairment. The BRadykinesia Akinesia INcoordination (BRAIN) test is a validated keyboard tapping test, evaluating proximal upper-limb motor impairment. Here, a new Distal Finger Tapping (DFT) test was developed to assess distal upper-limb function. Kinetic parameters of the test include kinesia score (KS20, key taps over 20 s), akinesia time (AT20, mean dwell-time on each key) and incoordination score (IS20, variance of travelling time between key taps). To develop and evaluate a new keyboard-tapping test for objective and remote distal motor function in PD patients. The DFT and BRAIN tests were assessed in 55 PD patients and 65 controls. Test scores were compared between groups and correlated with the MDS-UPDRS-III finger tapping sub-scores. Nine additional PD patients were recruited for monitoring motor fluctuations. All three parameters discriminated effectively between PD patients and controls, with KS20 performing best, yielding 79% sensitivity for 85% specificity; area under the receiver operating characteristic curve (AUC) = 0.90. A combination of DFT and BRAIN tests improved discrimination (AUC = 0.95). Among three parameters, KS20 showed a moderate correlation with the MDS-UPDRS finger-tapping sub-score (Pearson's r = - 0.40, p = 0.002). Further, the DFT test detected subtle changes in motor fluctuation states which were not reflected clearly by the MDS-UPDRS-III finger tapping sub-scores. The DFT test is an online tool for assessing distal movements in PD, with future scope for longitudinal monitoring of motor complications
    corecore