5,233 research outputs found

    Structured Pathways, Reinforced Plans: Exploring the Impact of a Dual Enrollment Program on the College Choice and Career Interests of Future Teachers of Color

    Get PDF
    In response to the critical shortage of a diverse teacher workforce, Temple Education Scholars is a “Grow Your Own dual enrollment program model designed to promote access to postsecondary education and educator diversity. Grow Your Own programs have frequently been cited as a promising and potentially sustainable model for addressing the disparity between the racial identifications of students and those of their teachers. Using social cognitive career theory, we explore how three participants in the Temple Education Scholars program develop academic and career interests in teaching and make educational choices related to their career aspirations. Following case study analysis, we illustrate how three participants with interests in teaching described what attracted them to the program, how the program supported their college and career aspirations, and their visions for careers in education

    Facile tungsten alkylidene synthesis: alkylidene transfer from a phosphorane to a tungsten imido complex

    Get PDF
    A number of transition-metal complexes catalyze the ring-opening metathesis polymerization (ROMP) of a variety of cyclic olefins. Notable among these catalysts are the titanacyclobutane derivatives and certain alkylidene complexes of tungsten: molybdenum, tantalum, and rhenium. The highly reactive tungsten alkylidene complexes developed by Schrock, Osborn, and Basset are particularly useful for the synthesis of unsaturated polymers such as novel conducting polymers and soluble precursors and derivatives of polyacetylene. Recent applications of these catalytic systems involve the polymerization of acyclic alkynes and dienes In addition, the use of tungsten alkylidene complexes as Wittig-type reagents in organic synthesis holds considerable promise

    Subclinical infection of macaques and baboons with a baboon simarterivirus

    Get PDF
    Simarteriviruses (Arteriviridae: Simarterivirinae) are commonly found at high titers in the blood of African monkeys but do not cause overt disease in these hosts. In contrast, simarteriviruses cause severe disease in Asian macaques upon accidental or experimental transmission. Here, we sought to better understand the host-dependent drivers of simarterivirus pathogenesis by infecting olive baboons (n = 4) and rhesus monkeys (n = 4) with the simarterivirus Southwest baboon virus 1 (SWBV-1). Surprisingly, none of the animals in our study showed signs of disease following SWBV-1 inoculation. Three animals (two rhesus monkeys and one olive baboon) became infected and sustained high levels of SWBV-1 viremia for the duration of the study. The course of SWBV-1 infection was highly predictable: plasma viremia peaked between 1 × 107 and 1 × 108 vRNA copies/mL at 3–10 days post-inoculation, which was followed by a relative nadir and then establishment of a stable set-point between 1 × 106 and 1 × 107 vRNA copies/mL for the remainder of the study (56 days). We characterized cellular and antibody responses to SWBV-1 infection in these animals, demonstrating that macaques and baboons mount similar responses to SWBV-1 infection, yet these responses are ineffective at clearing SWBV-1 infection. SWBV-1 sequencing revealed the accumulation of non-synonymous mutations in a region of the genome that corresponds to an immunodominant epitope in the simarterivirus major envelope glycoprotein GP5, which likely contribute to viral persistence by enabling escape from host antibodies

    Colors and K-Band Counts of Extremely Faint Field Galaxies

    Get PDF
    We combine deep K-band (Keck) with V- and I-band (NTT) observations of two high-Galactic latitude fields, surveying a total of ~2 sq. arcmin. The K-band galaxy counts continue to rise above K=22, reaching surface densities of few x 10^5 per sq. degree. The slope for the counts is (d log(N) per mag per sq. degree) = 0.23 +/- 0.02 between K=18-23, consistent with other deep K surveys. The numbers of galaxies in each mag bin is about two times greater than the galaxy counts of Djorgovski et al. (1995). The optical and near infrared magnitudes of all objects detected in the V+I+K image are discussed in the context of grids of isochrone synthesis galaxy evolutionary models (Bruzual & Charlot 1993, 1995). The colors of most of the observed galaxies are consistent with a population drawn from a broad redshift distribution. A few galaxies at K=19-20 are red in both colors (V-I>3; I-K>2), consistent with being early-type galaxies having undergone a burst of star formation at z>5 and viewed at z~1. At K>20, we find ~8 ``red outlier'' galaxies with I-K>4 and V-I<2.5, whose colors are difficult to mimic by a single evolving or non-evolving stellar population at any redshift. They are likely either low-metallicity, dusty dwarf galaxies, or old galaxies at high redshift (z>1.2). Their surface density is several per square arcminute, which is so high that they are probably common objects of low luminosity L<L∗L<L_*.Comment: 28 pages, 9 Figures (2 Plates), uses aaspp4.sty. The complete paper (including large figures and the plates) are available via anonymous ftp at ftp://coma.berkeley.edu/pub/lmoustakas/ . To appear in the Astrophysical Journal, Feb 1 1997, vol. 47

    Indigenous research sovereignties: Sparking the deeper conversations we need

    Get PDF
    This article is part of the Environment and Planning F: Philosophy, Theory, Models, Methods and Practice special issue on ‘Indigenous Research Sovereignty’, edited by Jay T. Johnson, Joseph P. Brewer II., Melissa K. Nelson, Mark H. Palmer, and Renee Pualani Louis.This article seeks to spark a conversation and further debate through the 15 papers and 3 commentaries comprising this special issue entitled “Indigenous Research Sovereignty.” By inviting the authors to publish in this special edition and address Indigenous Research Sovereignty from a variety of viewpoints, we have brought together a collection that inspires, transforms, and expands on the ways in which Indigenous and non-Indigenous researchers are engaging with Indigenous communities to address the research agendas of communities across the globe. Through our work together over the past 8 years, the editorial team have identified eight themes within this broad concept of Indigenous Research Sovereignty. This article provides an introduction to those eight themes in the broadest strokes, while the papers and commentaries explore and refine them with significant depth. We seek to spark a conversation, we do not intend to provide answers to any of the dilemma facing Indigenous communities as they engage, or choose not to engage, in research. Our primary goal is to express an all-encompassing concern for the protection of Indigenous Communities’ inherent rights and knowledges.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The guest editors acknowledge financial support for the FIRST Network by the United States National Science Foundation through grant number 1417767

    Anisotropy and periodicity in the density distribution of electrons in a quantum-well

    Full text link
    We use low temperature near-field optical spectroscopy to image the electron density distribution in the plane of a high mobility GaAs quantum well. We find that the electrons are not randomly distributed in the plane, but rather form narrow stripes (width smaller than 150 nm) of higher electron density. The stripes are oriented along the [1-10 ] crystal direction, and are arranged in a quasi-periodic structure. We show that elongated structural mounds, which are intrinsic to molecular beam epitaxy, are responsible for the creation of this electron density texture.Comment: 10 pages, 3 figure
    • 

    corecore