5 research outputs found

    Antroquinonol A: Scalable Synthesis and Preclinical Biology of a Phase 2 Drug Candidate

    No full text
    The fungal-derived Taiwanese natural product antroquinonol A has attracted both academic and commercial interest due to its reported exciting biological properties. This reduced quinone is currently in phase II trials (USA and Taiwan) for the treatment of non-small-cell lung carcinoma (NSCLC) and was recently granted orphan drug status by the FDA for the treatment of pancreatic cancer and acute myeloid leukemia. Pending successful completion of human clinical trials, antroquinonol is expected to be commercialized under the trade name Hocena. A synthesis-enabled biological re-examination of this promising natural product, however, reveals minimal <i>in vitro</i> and <i>in vivo</i> antitumor activity in preclinical models

    Discovery of Potent Heterodimeric Antagonists of Inhibitor of Apoptosis Proteins (IAPs) with Sustained Antitumor Activity

    No full text
    The prominent role of IAPs in controlling cell death and their overexpression in a variety of cancers has prompted the development of IAP antagonists as potential antitumor therapies. We describe the identification of a series of heterodimeric antagonists with highly potent antiproliferative activities in cIAP- and XIAP-dependent cell lines. Compounds <b>15</b> and <b>17</b> further demonstrate curative efficacy in human melanoma and lung cancer xenograft models and are promising candidates for advanced studies

    Discovery of Potent Heterodimeric Antagonists of Inhibitor of Apoptosis Proteins (IAPs) with Sustained Antitumor Activity

    No full text
    The prominent role of IAPs in controlling cell death and their overexpression in a variety of cancers has prompted the development of IAP antagonists as potential antitumor therapies. We describe the identification of a series of heterodimeric antagonists with highly potent antiproliferative activities in cIAP- and XIAP-dependent cell lines. Compounds <b>15</b> and <b>17</b> further demonstrate curative efficacy in human melanoma and lung cancer xenograft models and are promising candidates for advanced studies

    The Discovery of Macrocyclic XIAP Antagonists from a DNA-Programmed Chemistry Library, and Their Optimization To Give Lead Compounds with in Vivo Antitumor Activity

    No full text
    Affinity selection screening of macrocycle libraries derived from DNA-programmed chemistry identified XIAP BIR2 and BIR3 domain inhibitors that displace bound pro-apoptotic caspases. X-ray cocrystal structures of key compounds with XIAP BIR2 suggested potency-enhancing structural modifications. Optimization of dimeric macrocycles with similar affinity for both domains were potent pro-apoptotic agents in cancer cell lines and efficacious in shrinking tumors in a mouse xenograft model

    Dimeric Macrocyclic Antagonists of Inhibitor of Apoptosis Proteins for the Treatment of Cancer

    No full text
    A series of dimeric macrocyclic compounds were prepared and evaluated as antagonists for inhibitor of apoptosis proteins. The most potent analogue <b>11</b>, which binds to XIAP and c-IAP proteins with high affinity and induces caspase-3 activation and ultimately cell apoptosis, inhibits growth of human melanoma and colorectal cell lines at low nanomolar concentrations. Furthermore, compound <b>11</b> demonstrated significant antitumor activity in the A875 human melanoma xenograft model at doses as low as 2 mg/kg on a q3d schedule
    corecore