923 research outputs found
Towards a unified treatment of gravitational-wave data analysis
We present a unified description of gravitational-wave data analysis that
unites the template-based analysis used to detect deterministic signals from
well-modeled sources, such as binary-black-hole mergers, with the
cross-correlation analysis used to detect stochastic gravitational-wave
backgrounds. We also discuss the connection between template-based analyses and
those that target poorly-modeled bursts of gravitational waves, and suggest a
new approach for detecting burst signals.Comment: 4 pages, no figures, published versio
In an expanding universe, what doesn't expand?
The expansion of the universe is often viewed as a uniform stretching of
space that would affect compact objects, atoms and stars, as well as the
separation of galaxies. One usually hears that bound systems do not take part
in the general expansion, but a much more subtle question is whether bound
systems expand partially. In this paper, a very definitive answer is given for
a very simple system: a classical "atom" bound by electrical attraction. With a
mathemical description appropriate for undergraduate physics majors, we show
that this bound system either completely follows the cosmological expansion, or
-- after initial transients -- completely ignores it. This "all or nothing"
behavior can be understood with techniques of junior-level mechanics. Lastly,
the simple description is shown to be a justifiable approximation of the
relativistically correct formulation of the problem.Comment: 8 pages, 9 eps figure
Sensitivity curves for searches for gravitational-wave backgrounds
We propose a graphical representation of detector sensitivity curves for stochastic gravitational-wave backgrounds that takes into account the increase in sensitivity that comes from integrating over frequency in addition to integrating over time. This method is valid for backgrounds that have a power-law spectrum in the analysis band. We call these graphs “power-law integrated curves.” For simplicity, we consider cross-correlation searches for unpolarized and isotropic stochastic backgrounds using two or more detectors. We apply our method to construct power-law integrated sensitivity curves for second-generation ground-based detectors such as Advanced LIGO, space-based detectors such as LISA and the Big Bang Observer, and timing residuals from a pulsar timing array. The code used to produce these plots is available at https://dcc.ligo.org/LIGO-P1300115/public for researchers interested in constructing similar sensitivity curves
The stochastic background: scaling laws and time to detection for pulsar timing arrays
We derive scaling laws for the signal-to-noise ratio of the optimal
cross-correlation statistic, and show that the large power-law increase of the
signal-to-noise ratio as a function of the the observation time that is
usually assumed holds only at early times. After enough time has elapsed,
pulsar timing arrays enter a new regime where the signal to noise only scales
as . In addition, in this regime the quality of the pulsar timing
data and the cadence become relatively un-important. This occurs because the
lowest frequencies of the pulsar timing residuals become gravitational-wave
dominated. Pulsar timing arrays enter this regime more quickly than one might
naively suspect. For T=10 yr observations and typical stochastic background
amplitudes, pulsars with residual RMSs of less than about s are already
in that regime. The best strategy to increase the detectability of the
background in this regime is to increase the number of pulsars in the array. We
also perform realistic simulations of the NANOGrav pulsar timing array, which
through an aggressive pulsar survey campaign adds new millisecond pulsars
regularly to its array, and show that a detection is possible within a decade,
and could occur as early as 2016.Comment: Submitted to Classical and Quantum Gravity for Focus Issue on Pulsar
Timing Arrays. 15 pages, 5 figure
Robust statistics for deterministic and stochastic gravitational waves in non-Gaussian noise I: Frequentist analyses
Gravitational wave detectors will need optimal signal-processing algorithms
to extract weak signals from the detector noise. Most algorithms designed to
date are based on the unrealistic assumption that the detector noise may be
modeled as a stationary Gaussian process. However most experiments exhibit a
non-Gaussian ``tail'' in the probability distribution. This ``excess'' of large
signals can be a troublesome source of false alarms. This article derives an
optimal (in the Neyman-Pearson sense, for weak signals) signal processing
strategy when the detector noise is non-Gaussian and exhibits tail terms. This
strategy is robust, meaning that it is close to optimal for Gaussian noise but
far less sensitive than conventional methods to the excess large events that
form the tail of the distribution. The method is analyzed for two different
signal analysis problems: (i) a known waveform (e.g., a binary inspiral chirp)
and (ii) a stochastic background, which requires a multi-detector signal
processing algorithm. The methods should be easy to implement: they amount to
truncation or clipping of sample values which lie in the outlier part of the
probability distribution.Comment: RevTeX 4, 17 pages, 8 figures, typos corrected from first version
A Mock Data and Science Challenge for Detecting an Astrophysical Stochastic Gravitational-Wave Background with Advanced LIGO and Advanced Virgo
The purpose of this mock data and science challenge is to prepare the data
analysis and science interpretation for the second generation of
gravitational-wave experiments Advanced LIGO-Virgo in the search for a
stochastic gravitational-wave background signal of astrophysical origin. Here
we present a series of signal and data challenges, with increasing complexity,
whose aim is to test the ability of current data analysis pipelines at
detecting an astrophysically produced gravitational-wave background, test
parameter estimation methods and interpret the results. We introduce the
production of these mock data sets that includes a realistic observing scenario
data set where we account for different sensitivities of the advanced detectors
as they are continuously upgraded toward their design sensitivity. After
analysing these with the standard isotropic cross-correlation pipeline we find
that we are able to recover the injected gravitational-wave background energy
density to within for all of the data sets and present the results
from the parameter estimation. The results from this mock data and science
challenge show that advanced LIGO and Virgo will be ready and able to make a
detection of an astrophysical gravitational-wave background within a few years
of operations of the advanced detectors, given a high enough rate of compact
binary coalescing events
- …
