59 research outputs found
Prevalence of Hepatitis B e Antigen in Chronic HBV Carriers in North-central Nigeria
Hepatitis B virus (HBV) is an important clinical problem due to its
worldwide distribution and potential of adverse sequelae, including
hepatocellular carcinoma (HCC). We studied the prevalence of hepatitis
B virus e antigen (HBeAg) among individuals determined to be HBV
surface antigen-positive (HBsAg+) and analyzed the gender/age category
associated with more active HBV infection. A total of 572 HBsAg+
individuals, as determined by a double antibody sandwich ELISA method,
participated in the study. They were tested for HbeAg, using a lateral
flow chromatographic immunoassay. One hundred and ten individuals were
found to be HBeAg-positive giving an overall prevalence of 19.2%. Of
these 110 individuals, 20 (18.2%) were females, and 90 (81.8%) were
males. Thus, the prevalence of HBeAg appears to be higher in males than
in females (p<0.05). Our data also revealed that the prevalence of
HBeAg was higher in patients between the age-group of 0-10 years and
11-20 years and appeared to decrease with increase in age. Taken
together, our data show that approximately 1/5 of HBV-infected
individuals are HBeAg+, suggesting that the virus is actively
replicating and infecting liver-cells thereby ensuring an
HBV-transmission pool within the Nigerian population. We suggest
strengthening of the childhood HBV vaccination programmes, massive
intervention activities, and treatment programmes, especially among
young people to reverse the possible devastating effect of HBV
infection. The success of these efforts will depend on our resolution
to make the elimination of HBV infection a top priority on the
public-health agenda as we start the second decade of this new century
Next-generation sequencing reveals large connected networks of intra-host HCV variants
Background: Next-generation sequencing (NGS) allows for sampling numerous viral variants from infected patients. This provides a novel opportunity to represent and study the mutational landscape of Hepatitis C Virus (HCV) within a single host. Results: Intra-host variants of the HCV E1/E2 region were extensively sampled from 58 chronically infected patients. After NGS error correction, the average number of reads and variants obtained from each sample were 3202 and 464, respectively. The distance between each pair of variants was calculated and networks were created for each patient, where each node is a variant and two nodes are connected by a link if the nucleotide distance between them is 1. The work focused on large components having > 5% of all reads, which in average account for 93.7% of all reads found in a patient. The distance between any two variants calculated over the component correlated strongly with nucleotide distances (r = 0.9499; p = 0.0001), a better correlation than the one obtained with Neighbour-Joining trees (r = 0.7624; p = 0.0001). In each patient, components were well separated, with the average distance between (6.53%) being 10 times greater than within each component (0.68%). The ratio of nonsynonymous to synonymous changes was calculated and some patients (6.9%) showed a mixture of networks under strong negative and positive selection. All components were robust to in silico stochastic sampling; even after randomly removing 85% of all reads, the largest connected component in the new subsample still involved 82.4% of remaining nodes. In vitro sampling showed that 93.02% of components present in the original sample were also found in experimental replicas, with 81.6% of reads found in both. When syringe-sharing transmission events were simulated, 91.2% of all simulated transmission events seeded all components present in the source. Conclusions: Most intra-host variants are organized into distinct single-mutation components that are: well separated from each other, represent genetic distances between viral variants, robust to sampling, reproducible and likely seeded during transmission events. Facilitated by NGS, large components offer a novel evolutionary framework for genetic analysis of intra-host viral populations and understanding transmission, immune escape and drug resistance
Recommended from our members
Drug-resistance of a viral population and its individual intra-host variants during the first 48 hours of therapy
Using HCV and IFN-resistance as a proof of concept, we have devised a new methodology for calculating the effect of a drug over a viral population and the resistance of its individual intra-host variants. By means of next-generation sequencing, HCV variants were obtained from sera collected at 9 time-points from 16 patients during the first 48 hours after injection of IFN-α. IFN-resistance coefficients were calculated for individual variants using changes in their relative frequencies, and for the entire intra-host viral population using changes in viral titer during the initial 48 hours. Population-wide resistance and presence of IFN-resistant variants were highly associated with pegIFN-α2a/RBV treatment outcome at week 12 (p = 3.78×10-5 and 0.0114, respectively). This new method allows an accurate measurement of resistance based solely on changes in viral titer or the relative frequency of intra-host viral variants during a short observation time
Efficient error correction for next-generation sequencing of viral amplicons
<p>Abstract</p> <p>Background</p> <p>Next-generation sequencing allows the analysis of an unprecedented number of viral sequence variants from infected patients, presenting a novel opportunity for understanding virus evolution, drug resistance and immune escape. However, sequencing in bulk is error prone. Thus, the generated data require error identification and correction. Most error-correction methods to date are not optimized for amplicon analysis and assume that the error rate is randomly distributed. Recent quality assessment of amplicon sequences obtained using 454-sequencing showed that the error rate is strongly linked to the presence and size of homopolymers, position in the sequence and length of the amplicon. All these parameters are strongly sequence specific and should be incorporated into the calibration of error-correction algorithms designed for amplicon sequencing.</p> <p>Results</p> <p>In this paper, we present two new efficient error correction algorithms optimized for viral amplicons: (i) k-mer-based error correction (KEC) and (ii) empirical frequency threshold (ET). Both were compared to a previously published clustering algorithm (SHORAH), in order to evaluate their relative performance on 24 experimental datasets obtained by 454-sequencing of amplicons with known sequences. All three algorithms show similar accuracy in finding true haplotypes. However, KEC and ET were significantly more efficient than SHORAH in removing false haplotypes and estimating the frequency of true ones.</p> <p>Conclusions</p> <p>Both algorithms, KEC and ET, are highly suitable for rapid recovery of error-free haplotypes obtained by 454-sequencing of amplicons from heterogeneous viruses.</p> <p>The implementations of the algorithms and data sets used for their testing are available at: <url>http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-algorithm</url></p
Epidemic History and Evolutionary Dynamics of Hepatitis B Virus Infection in Two Remote Communities in Rural Nigeria
BACKGROUND: In Nigeria, hepatitis B virus (HBV) infection has reached hyperendemic levels and its nature and origin have been described as a puzzle. In this study, we investigated the molecular epidemiology and epidemic history of HBV infection in two semi-isolated rural communities in North/Central Nigeria. It was expected that only a few, if any, HBV strains could have been introduced and effectively transmitted among these residents, reflecting limited contacts of these communities with the general population in the country. METHODS AND FINDINGS: Despite remoteness and isolation, approximately 11% of the entire population in these communities was HBV-DNA seropositive. Analyses of the S-gene sequences obtained from 55 HBV-seropositive individuals showed the circulation of 37 distinct HBV variants. These HBV isolates belong predominantly to genotype E (HBV/E) (n=53, 96.4%), with only 2 classified as sub-genotype A3 (HBV/A3). Phylogenetic analysis showed extensive intermixing between HBV/E variants identified in these communities and different countries in Africa. Quasispecies analysis of 22 HBV/E strains using end-point limiting-dilution real-time PCR, sequencing and median joining networks showed extensive intra-host heterogeneity and inter-host variant sharing. To investigate events that resulted in such remarkable HBV/E diversity, HBV full-size genome sequences were obtained from 47 HBV/E infected persons and P gene was subjected to Bayesian coalescent analysis. The time to the most recent common ancestor (tMRCA) for these HBV/E variants was estimated to be year 1952 (95% highest posterior density (95% HPD): 1927-1970). Using additional HBV/E sequences from other African countries, the tMRCA was estimated to be year 1948 (95% HPD: 1924-1966), indicating that HBV/E in these remote communities has a similar time of origin with multiple HBV/E variants broadly circulating in West/Central Africa. Phylogenetic analysis and statistical neutrality tests suggested rapid HBV/E population expansion. Additionally, skyline plot analysis showed an increase in the size of the HBV/E-infected population over the last approximately 30-40 years. CONCLUSIONS: Our data suggest a massive introduction and relatively recent HBV/E expansion in the human population in Africa. Collectively, these data show a significant shift in the HBV/E epidemic dynamics in Africa over the last century
Broad Antibody Mediated Cross-Neutralization and Preclinical Immunogenicity of New Codon-Optimized HIV-1 Clade CRF02_AG and G Primary Isolates
Creation of an effective vaccine for HIV has been an elusive goal of the scientific community for almost 30 years. Neutralizing antibodies are assumed to be pivotal to the success of a prophylactic vaccine but previous attempts to make an immunogen capable of generating neutralizing antibodies to primary “street strain” isolates have resulted in responses of very limited breadth and potency. The objective of the study was to determine the breadth and strength of neutralizing antibodies against autologous and heterologous primary isolates in a cohort of HIV-1 infected Nigerians and to characterize envelopes from subjects with particularly broad or strong immune responses for possible use as vaccine candidates in regions predominated by HIV-1 CRF02_AG and G subtypes. Envelope vectors from a panel of primary Nigerian isolates were constructed and tested with plasma/sera from the same cohort using the PhenoSense HIV neutralizing antibody assay (Monogram Biosciences Inc, USA) to assess the breadth and potency of neutralizing antibodies. The immediate goal of this study was realized by the recognition of three broadly cross-neutralizing sera: (NG2-clade CRF02_AG, NG3-clade CRF02_AG and NG9- clade G). Based on these findings, envelope gp140 sequences from NG2 and NG9, complemented with a gag sequence (Clade G) and consensus tat (CRF02_AG and G) antigens have been codon-optimized, synthesized, cloned and evaluated in BALB/c mice. The intramuscular administration of these plasmid DNA constructs, followed by two booster DNA immunizations, induced substantial specific humoral response against all constructs and strong cellular responses against the gag and tat constructs. These preclinical findings provide a framework for the design of candidate vaccine for use in regions where the HIV-1 epidemic is driven by clades CRF02_AG and G
- …