5 research outputs found

    Gain enhancement of BiCMOS on-chip sub-THz antennas by mean of meta-cells

    Get PDF
    A MM-loaded sub-THz on-chip antenna with a narrow beamwidth, 9 dB gain and a simulated peak efficiency of 76% at the center frequency of 300 GHz is presented. By surrounding the antenna with a single MM-cell ring defined solely on the top metal of the back-end of line, an efficient suppression of the surface waves is obtained. The on-chip antenna has been designed using IHPs 130 nm SiGe BiCMOS technology with a 7-layer metallization stack, combined with the local backside etching process aimed to creating an air cavity which is then terminated by a reflective plane. By comparing the measured MM-loaded antenna performances to its non-MM-loaded counterpart, an enhanced integrity of the main lobe due to the MM-cells shielding effect can be observed. An excellent agreement between the simulated and measured performances has been found, which makes the MM-loaded antennas a valid alternative for the upcoming next-generation sub-THz transceivers

    Local characterization of ferromagnetic resonance in bulk and patterned magnetic materials using scanning microwave microscopy

    Get PDF
    We have demonstrated the capabilities of the scanning microwave microscopy (SMM) technique for measuring ferromagnetic resonance (FMR) spectra in nanometric areas of magnetic samples. The technique is evaluated using three different samples, including a yttrium iron garnet (YIG) polycrystalline bulk sample and a thick YIG film grown by liquid phase epitaxy (LPE). Patterned permalloy (Py) micromagnetic dots have been characterized to assess the performance for imaging applications of the technique, measuring the variation of the magnetic properties of the sample along its surface. The proposed technique may pave the way for the development of high spatially resolved mapping of magnetostatic modes in different nanomagnetic and micromagnetic structures

    Identification of Compact Equivalent Circuit Model for Metamaterial Structures

    No full text
    In this work, a simple and efficient circuit modelling of metamaterial structures, providing a compact circuit able to describe accurately the device over a large bandwidth of operation is proposed. The equivalent circuit model is obtained by the identification process of the load in terms of shunt branches constituted by reactive elements that can be both positive and negative. The circuit model is validated by analysing the Split Ring Resonator (SRR) structure. The presence of negative elements in the non-Foster load are transformed to positive reactive elements by converting the load from shunt to series. Unlike the T or Π circuit models, using this approach a circuit model can be constructed directly from the scattering parameters and valid for any circuit topologies

    SPARSE MATRIX INVERSION. Report No. 443.

    Get PDF
    Scanning microwave microscopy (SMM) is based on the interaction between a sample and an electromagnetic evanescent field, in the microwave frequency range. SMM is usually coupled with a scanning probe microscopy (SPM) technique such as in our case, a scanning tunneling microscope (STM). In this way, the STM tip is used to control the distance between the probe and the sample while acting as an antenna for the microwave field. Thanks to the peculiarity of our home-made setup, the SMM is a suitable method to study blisters formed on HOPG surface as consequence of an electrochemical treatment. Our system has a “broad-band” approach that opens the way to perform local microwave spectroscopy over a broad frequency range. Moreover, microwaves have the ability to penetrate into the sample allowing the sub-surface characterization of materials. The application of the SMM to characterize blisters formed on the HOPG surface provides information on the sub-layer structures

    Reversing the Humidity Response of MoS2- And WS2-Based Sensors Using Transition-Metal Salts

    No full text
    Two-dimensional materials, such as transition-metal dichalcogenides (TMDs), are attractive candidates for sensing applications due to their high surface-to-volume ratio, chemically active edges, and good electrical properties. However, their electrical response to humidity is still under debate and experimental reports remain inconclusive. For instance, in different studies, the impedance of MoS2-based sensors has been found to either decrease or increase with increasing humidity, compromising the use of MoS2 for humidity sensing. In this work, we focus on understanding the interaction between water and TMDs. We fabricated and studied humidity sensors based on MoS2 and WS2 coated with copper chloride and silver nitrate. The devices exhibited high chemical stability and excellent humidity sensing performance in relative humidity between 4 and 80%, with response and recovery times of 2 and 40 s, respectively. We have systematically investigated the humidity response of the materials as a function of the type and amount of induced metal salt and observed the reverse action of sensing mechanisms. This phenomenon is explained based on a detailed structural analysis of the samples considering the Grotthuss mechanism in the presence of charge trapping, which was represented by an appropriate lumped-element model. Our findings open up a possibility to tune the electrical response in a facile manner and without compromising the high performance of the sensor. They offer an insight into the time-dependent performance and aging of the TMD-based sensing devices.The Catalan Institute of Nanoscience and Nanotechnology (ICN2) is funded by the CERCA program/Generalitat de Catalunya and is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706). We acknowledge support from the EU Project Nanosmart (H2020 ICT-07-2018) and ICN2 members acknowledge the Spanish MINECO project SIP (PGC2018-101743-B-I00). P.X. acknowledges support by a PhD fellowship from the EU Marie SkƂodowska-Curie COFUND PREBIST project (Grant Agreement No. 754558)
    corecore