4 research outputs found

    Two novel ligand-independent variants of the VEGFR-1 receptor are expressed in human testis and spermatozoa, one of them with the ability to activate SRC proto-oncogene tyrosine kinases

    Get PDF
    The vascular endothelial growth factor receptor 1 (VEGFR-1) family of receptors is preferentially expressed in endothelial cells, with the full-length and mostly the soluble (sVEGFR-1) isoforms being the most expressed ones. Surprisingly, cancer cells (MDA-MB-231) express, instead, alternative intracellular VEGFR-1 variants. We wondered if these variants, that are no longer dependent on ligands for activation, were expressed in a physiological context, specifically in spermatogenic cells, and whether their expression was maintained in spermatozoa and required for human fertility. By interrogating a human library of mature testis cDNA, we characterized two new truncated intracellular variants different from the ones previously described in cancer cells. The new isoforms were transcribed from alternative transcription start sites (aTSS) located respectively in intron-19 (i19VEGFR-1) and intron-28 (i28VEGFR-1) of the VEGFR-1 gene (GenBank accession numbers JF509744 and JF509745) and expressed in mature testis and spermatozoa. In this paper, we describe the characterization of these isoforms by RT-PCR, northern blot, and western blot, their preferential expression in human mature testis and spermatozoa, and the elements that punctuate their proximal promoters and suggest cues for their expression in spermatogenic cells. Mechanistically, we show that i19VEGFR-1 has a strong ability to phosphorylate and activate SRC proto-oncogene non-receptor tyrosine kinases and a significant bias toward a decrease in expression in patients considered infertile by WHO criteria

    Proteomic changes in human sperm during sequential in vitro capacitation and acrosome reaction

    Get PDF
    The male gamete is not completely mature after ejaculation and requires further events in the female genital tract to acquire fertilizing ability, including the processes of capacitation and acrosome reaction. In order to shed light on protein changes experienced by the sperm cell in preparation for fertilization, a comprehensive quantitative proteomic profiling based on isotopic peptide labeling and liquid chromatography followed by tandem mass spectrometry was performed on spermatozoa from three donors of proven fertility under three sequential conditions: purification with density gradient centrifugation, incubation with capacitation medium, and induction of acrosome reaction by exposure to the calcium ionophore A23187. After applying strict selection criteria for peptide quantification and for statistical analyses, 36 proteins with significant changes in their relative abundance within sperm protein extracts were detected. Moreover, the presence of peptide residues potentially harboring sites for post-translational modification was revealed, suggesting that protein modification may be an important mechanism in sperm maturation. In this regard, increased levels of proteins mainly involved in motility and signaling, both regulated by protein modifiers, were detected in sperm lysates following incubation with capacitation medium. In contrast, less abundant proteins in acrosome-reacted cell lysates did not contain potentially modifiable residues, suggesting the possibility that all those proteins might be relocated or released during the process. Protein-protein interaction analysis revealed a subset of proteins potentially involved in sperm maturation, including the proteins Erlin-2 (ERLIN2), Gamma-glutamyl hydrolase (GGH) and Transmembrane emp24 domain-containing protein 10 (TMED10). These results contribute to the current knowledge of the molecular basis of human fertilization. It should now be possible to further validate the potential role of the detected altered proteins as modulators of male infertility

    Two novel ligand-independent variants of the VEGFR-1 receptor are expressed in human testis and spermatozoa, one of them with the ability to activate SRC proto-oncogene tyrosine kinases

    No full text
    The vascular endothelial growth factor receptor 1 (VEGFR-1) family of receptors is preferentially expressed in endothelial cells, with the full-length and mostly the soluble (sVEGFR-1) isoforms being the most expressed ones. Surprisingly, cancer cells (MDA-MB-231) express, instead, alternative intracellular VEGFR-1 variants. We wondered if these variants, that are no longer dependent on ligands for activation, were expressed in a physiological context, specifically in spermatogenic cells, and whether their expression was maintained in spermatozoa and required for human fertility. By interrogating a human library of mature testis cDNA, we characterized two new truncated intracellular variants different from the ones previously described in cancer cells. The new isoforms were transcribed from alternative transcription start sites (aTSS) located respectively in intron-19 (i19VEGFR-1) and intron-28 (i28VEGFR-1) of the VEGFR-1 gene (GenBank accession numbers JF509744 and JF509745) and expressed in mature testis and spermatozoa. In this paper, we describe the characterization of these isoforms by RT-PCR, northern blot, and western blot, their preferential expression in human mature testis and spermatozoa, and the elements that punctuate their proximal promoters and suggest cues for their expression in spermatogenic cells. Mechanistically, we show that i19VEGFR-1 has a strong ability to phosphorylate and activate SRC proto-oncogene non-receptor tyrosine kinases and a significant bias toward a decrease in expression in patients considered infertile by WHO criteria
    corecore