73 research outputs found
Recommended from our members
The S1P-S1PR Axis in Neurological Disorders-Insights into Current and Future Therapeutic Perspectives.
Sphingosine 1-phosphate (S1P), derived from membrane sphingolipids, is a pleiotropic bioactive lipid mediator capable of evoking complex immune phenomena. Studies have highlighted its importance regarding intracellular signaling cascades as well as membrane-bound S1P receptor (S1PR) engagement in various clinical conditions. In neurological disorders, the S1P-S1PR axis is acknowledged in neurodegenerative, neuroinflammatory, and cerebrovascular disorders. Modulators of S1P signaling have enabled an immense insight into fundamental pathological pathways, which were pivotal in identifying and improving the treatment of human diseases. However, its intricate molecular signaling pathways initiated upon receptor ligation are still poorly elucidated. In this review, the authors highlight the current evidence for S1P signaling in neurodegenerative and neuroinflammatory disorders as well as stroke and present an array of drugs targeting the S1P signaling pathway, which are being tested in clinical trials. Further insights on how the S1P-S1PR axis orchestrates disease initiation, progression, and recovery may hold a remarkable potential regarding therapeutic options in these neurological disorders
CXCL16 and oxLDL are induced in the onset of diabetic nephropathy
Diabetic nephropathy (DN) is a major cause of end-stage renal failure worldwide. Oxidative stress has been reported to be a major culprit of the disease and increased oxidized low density lipoprotein (oxLDL) immune complexes were found in patients with DN. In this study we present evidence, that CXCL16 is the main receptor in human podocytes mediating the uptake of oxLDL. In contrast, in primary tubular cells CD36 was mainly involved in the uptake of oxLDL. We further demonstrate that oxLDL down-regulated α3-integrin expression and increased the production of fibronectin in human podocytes. In addition, oxLDL uptake induced the production of reactive oxygen species (ROS) in human podocytes. Inhibition of oxLDL uptake by CXCL16 blocking antibodies abrogated the fibronectin and ROS production and restored α3 integrin expression in human podocytes. Furthermore we present evidence that hyperglycaemic conditions increased CXCL16 and reduced ADAM10 expression in podocytes. Importantly, in streptozotocin-induced diabetic mice an early induction of CXCL16 was accompanied by higher levels of oxLDL. Finally immunofluorescence analysis in biopsies of patients with DN revealed increased glomerular CXCL16 expression, which was paralleled by high levels of oxLDL. In summary, regulation of CXCL16, ADAM10 and oxLDL expression may be an early event in the onset of DN and therefore all three proteins may represent potential new targets for diagnosis and therapeutic intervention in DN
Failure of Interferon γ to Induce the Anti-Inflammatory Interleukin 18 Binding Protein in Familial Hemophagocytosis
Background: Familial hemophagocytosis (FHL) is a rare disease associated with defects in proteins involved in CD8+ T-cell cytotoxicity. Hyperactivation of immune cells results in a perilous, Th1-driven cytokine storm. We set out to explore the regulation of cytokines in an FHL patient who was clinically stable on low-dose immunosuppressive therapy after bone marrow transplantation over a six-month period. During this period, chimerism analyses showed that the fraction of host cells was between 1 and 10%. Both parents of the patient as well as healthy volunteers were studied for comparison. Methods/Principal Findings: Using ELISA, quantitative real-time PCR, and clinical laboratory methods, we investigated constitutive and inducible cytokines, polymorphisms, and clinical parameters in whole blood and whole blood cultures. Although routine laboratory tests were within the normal range, the chemokines IP-10 and IL-8 as well as the cytokine IL-27p28 were increased up to 10-fold under constitutive and stimulated conditions compared to healthy controls. Moreover, high levels of IFNgamma and TNFalpha were produced upon stimulation. Unexpectedly, IFNgamma induction of IL-18 binding protein (IL-18BP) was markedly reduced (1.6-fold vs 5-fold in controls). The patient's mother featured intermediately increased cytokine levels, whereas levels in the father were similar to those in the controls. Conclusions/Significance: Since IL-18 plays a major role in perpetuating hemophagocytosis, the failure of IFNgamma to induce IL-18BP may constitute a fundamental pathogenetic mechanism. Furthermore, increased production of IL-8 and IL-27 appears to be associated with this disease. Such dysregulation of cytokines was also found in the heterozygous parents, providing a novel insight into genotype-phenotype correlation of FHL which may encourage future research of this rare disease
Warfarin Anticoagulation Exacerbates the Risk of Hemorrhagic Transformation after rt-PA Treatment in Experimental Stroke: Therapeutic Potential of PCC
Background: Oral anticoagulant therapy (OAT) with warfarin is the standard of stroke prevention in patients with atrial fibrillation. Approximately 30% of patients with cardioembolic strokes are on OAT at the time of symptom onset. We investigated whether warfarin exacerbates the risk of thrombolysis-associated hemorrhagic transformation (HT) in a mouse model of ischemic stroke.
Methods: 62 C57BL/6 mice were used for this study. To achieve effective anticoagulation, warfarin was administered orally. We performed right middle cerebral artery occlusion (MCAO) for 3 h and assessed functional deficit and HT blood volume after 24 h.
Results: In non-anticoagulated mice, treatment with rt-PA (10 mg/kg i.v.) after 3 h MCAO led to a 5-fold higher degree of HT compared to vehicle-treated controls (4.0±0.5 µl vs. 0.8±0.1, p<0.001). Mice on warfarin revealed larger amounts of HT after rt-PA treatment in comparison to non-anticoagulated mice (9.2±3.2 µl vs. 2.8±1.0, p<0.05). The rapid reversal of anticoagulation by means of prothrombin complex concentrates (PCC, 100 IU/kg) at the end of the 3 h MCAO period, but prior to rt-PA administration, neutralized the exacerbated risk of HT as compared to sham-treated controls (3.8±0.7 µl vs. 15.0±3.8, p<0.001).
Conclusion: In view of the vastly increased risk of HT, it seems to be justified to withhold tPA therapy in effectively anticoagulated patients with acute ischemic stroke. The rapid reversal of anticoagulation with PCC prior to tPA application reduces the risk attributed to warfarin pretreatment and may constitute an interesting therapeutic option
Subcellular distribution of FTY720 and FTY720-phosphate in immune cells - another aspect of Fingolimod action relevant for therapeutic application
FTY720 (Fingolimod; Gilenya®) is an immune-modulatory prodrug which, after intracellular phosphorylation by sphingosine kinase 2 (SphK2) and export, mimics effects of the endogenous lipid mediator sphingosine-1-phosphate. Fingolimod has been introduced to treat relapsing-remitting multiple sclerosis. However, little has been published about the immune cell membrane penetration and subcellular distribution of FTY720 and FTY720-P. Thus, we applied a newly established LC-MS/MS method to analyze the subcellular distribution of FTY720 and FTY720-P in subcellular compartments of spleen cells of wild type, SphK1- and SphK2-deficient mice. These studies demonstrated that, when normalized to the original cell volume and calculated on molar basis, FTY720 and FTY720-P dramatically accumulated several hundredfold within immune cells reaching micromolar concentrations. The amount and distribution of FTY720 was differentially affected by SphK1- and SphK2-deficiency. On the background of recently described relevant intracellular FTY720 effects in the nanomolar range and the prolonged application in multiple sclerosis, this data showing a substantial intracellular accumulation of FTY720, has to be considered for benefit/risk ratio estimates
IFN-gamma Impairs Release of IL-8 by IL-1beta-stimulated A549 Lung Carcinoma Cells
Background Production of interferon (IFN)-gamma is key to efficient anti-tumor immunity. The present study was set out to investigate effects of IFNgamma on the release of the potent pro-angiogenic mediator IL-8 by human A549 lung carcinoma cells.
Methods A549 cells were cultured and stimulated with interleukin (IL)-1beta alone or in combination with IFNgamma. IL-8 production by these cells was analyzed with enzyme linked immuno sorbent assay (ELISA). mRNA-expression was analyzed by real-time PCR and RNase protection assay (RPA), respectively. Expression of inhibitor-kappaBalpha, cellular IL-8, and cyclooxygenase-2 was analyzed by Western blot analysis.
Results Here we demonstrate that IFNgamma efficiently reduced IL-8 secretion under the influence of IL-1beta. Surprisingly, real-time PCR analysis and RPA revealed that the inhibitory effect of IFNgamma on IL-8 was not associated with significant changes in mRNA levels. These observations concurred with lack of a modulatory activity of IFNgamma on IL-1beta-induced NF-kappaB activation as assessed by cellular IkappaB levels. Moreover, analysis of intracellular IL-8 suggests that IFNgamma modulated IL-8 secretion by action on the posttranslational level. In contrast to IL-8, IL-1beta-induced cyclooxygenase-2 expression and release of IL-6 were not affected by IFNgamma indicating that modulation of IL-1beta action by this cytokine displays specificity.
Conclusions Data presented herein agree with an angiostatic role of IFNgamma as seen in rodent models of solid tumors and suggest that increasing T helper type 1 (Th1)-like functions in lung cancer patients e.g. by local delivery of IFNgamma may mediate therapeutic benefit via mechanisms that potentially include modulation of pro-angiogenic IL-8
IL-27 Regulates IL-18 Binding Protein in Skin Resident Cells
IL-18 is an important mediator involved in chronic inflammatory conditions such as cutaneous lupus erythematosus, psoriasis and chronic eczema. An imbalance between IL-18 and its endogenous antagonist IL-18 binding protein (BP) may account for increased IL-18 activity. IL-27 is a cytokine with dual function displaying pro- and anti-inflammatory properties. Here we provide evidence for a yet not described anti-inflammatory mode of action on skin resident cells. Human keratinocytes and surprisingly also fibroblasts (which do not produce any IL-18) show a robust, dose-dependent and highly inducible mRNA expression and secretion of IL-18BP upon IL-27 stimulation. Other IL-12 family members failed to induce IL-18BP. The production of IL-18BP peaked between 48–72 h after stimulation and was sustained for up to 96 h. Investigation of the signalling pathway showed that IL-27 activates STAT1 in human keratinocytes and that a proximal GAS site at the IL-18BP promoter is of importance for the functional activity of IL-27. The data are in support of a significant anti-inflammatory effect of IL-27 on skin resident cells. An important novel property of IL-27 in skin pathobiology may be to counter-regulate IL-18 activities by acting on keratinocytes and importantly also on dermal fibroblasts
Early Production of IL-22 but Not IL-17 by Peripheral Blood Mononuclear Cells Exposed to live Borrelia burgdorferi: The Role of Monocytes and Interleukin-1
If insufficiently treated, Lyme borreliosis can evolve into an inflammatory disorder affecting skin, joints, and the CNS. Early innate immunity may determine host responses targeting infection. Thus, we sought to characterize the immediate cytokine storm associated with exposure of PBMC to moderate levels of live Borrelia burgdorferi. Since Th17 cytokines are connected to host defense against extracellular bacteria, we focused on interleukin (IL)-17 and IL-22. Here, we report that, despite induction of inflammatory cytokines including IL-23, IL-17 remained barely detectable in response to B. burgdorferi. In contrast, T cell-dependent expression of IL-22 became evident within 10 h of exposure to the spirochetes. This dichotomy was unrelated to interferon-γ but to a large part dependent on caspase-1 and IL-1 bioactivity derived from monocytes. In fact, IL-1β as a single stimulus induced IL-22 but not IL-17. Neutrophils display antibacterial activity against B. burgdorferi, particularly when opsonized by antibodies. Since neutrophilic inflammation, indicative of IL-17 bioactivity, is scarcely observed in Erythema migrans, a manifestation of skin inflammation after infection, protective and antibacterial properties of IL-22 may close this gap and serve essential functions in the initial phase of spirochete infection
Recommended from our members
The S1P-S1PR Axis in Neurological Disorders-Insights into Current and Future Therapeutic Perspectives.
Sphingosine 1-phosphate (S1P), derived from membrane sphingolipids, is a pleiotropic bioactive lipid mediator capable of evoking complex immune phenomena. Studies have highlighted its importance regarding intracellular signaling cascades as well as membrane-bound S1P receptor (S1PR) engagement in various clinical conditions. In neurological disorders, the S1P-S1PR axis is acknowledged in neurodegenerative, neuroinflammatory, and cerebrovascular disorders. Modulators of S1P signaling have enabled an immense insight into fundamental pathological pathways, which were pivotal in identifying and improving the treatment of human diseases. However, its intricate molecular signaling pathways initiated upon receptor ligation are still poorly elucidated. In this review, the authors highlight the current evidence for S1P signaling in neurodegenerative and neuroinflammatory disorders as well as stroke and present an array of drugs targeting the S1P signaling pathway, which are being tested in clinical trials. Further insights on how the S1P-S1PR axis orchestrates disease initiation, progression, and recovery may hold a remarkable potential regarding therapeutic options in these neurological disorders
- …