142 research outputs found

    High-Performance Hydrogen Evolution from MoS2(1–x)P x Solid Solution

    Get PDF
    A MoS2(1-x)Px solid solution (x = 0 to 1) is formed by thermally annealing mixtures of MoS2 and red phosphorus. The effective and stable electrocatalyst for hydrogen evolution in acidic solution holds promise for replacing scarce and expensive platinum that is used in present catalyst systems. The high performance originates from the increased surface area and roughness of the solid solution

    Hidden components in aqueous "Gold-144' fractionated by PAGE: high resolution orbitrap ESI-MS identifies the Gold-102 and higher all-aromatic Au-pMBA cluster compounds

    Get PDF
    Accepted author manuscriptExperimental and theoretical evidence reveals the resilience and stability of the larger aqueous gold clusters protected with p-mercaptobenzoic acid ligands (pMBA) of composition Aun(pMBA)p or (n, p). The Au144(pMBA)60, (144, 60), or gold-144 aqueous gold cluster is considered special because of its high symmetry, abundance, and icosahedral structure as well as its many potential uses in material and biological sciences. Yet, to this date, direct confirmation of its precise composition and total structure remains elusive. Results presented here from characterization via high-resolution electrospray ionization mass spectrometry on an Orbitrap instrument confirm Au102(pMBA)44 at isotopic resolution. Further, what usually appears as a single band for (144, 60) in electrophoresis (PAGE) is shown to also contain the (130, 50), recently determined to have a truncated-decahedral structure, and a (137, 56) component in addition to the dominant (144, 60) compound of chiral-icosahedral structure. This finding is significant in that it reveals the existence of structures never before observed in all-aromatic water-soluble species while pointing out the path toward elucidation of the thermodynamic control of protected gold nanocrystal formation.Ye

    Controlled Growth of Carbon Spheres Through the Mg-Reduction Route

    Get PDF
    Hollow spheres, hollow capsules and solid spheres of carbon were selectively synthesized by Mg-reduction of hexachlorobutadiene at appropriate reaction conditions. X-ray powder diffraction and Raman spectra reveal that the as-prepared materials have a well-ordered structure. A possible formation mechanism has been proposed

    Tetrahedral (T) closed-shell cluster of 29 silver atoms & 12 lipoate ligands, [Ag29(R-a-LA)12](3-): antibacterial and antifungal activity

    Get PDF
    Accepted author manuscriptHere we report on the identification and applications of an aqueous 29-atom silver cluster stabilized with 12 lipoate ligands, i.e. Ag29(R-α–LA)12 or (29,12), wherein R-α–LA = R-α-lipoic acid, a natural dithiolate. Its uniformity is checked by HPLC-ESI-MS and analytical ultracentrifugation, which confirms its small dimension (∼3 nm hydrodynamic diameter). For the first time, this cluster has been detected intact via electrospray ionization mass spectrometry, allowing one to confirm its composition, its [3-] charge-state, and the 8-electron shell configuration of its metallic silver core. Its electronic structure and bonding, including T-symmetry and profound chirality in the outer shell, have been analyzed by DFT quantum-chemical calculations, starting from the known structure of a nonaqueous homologue. The cluster is effective against Methicillin-Resistant Staphylococcus aureus bacteria (MRSA) at a minimum inhibitory concentration (MIC) of 0.6 mg-Ag/mL. A preformed Candida albicans fungal biofilm, impermeable to other antifungal agents, was also inhibited by aqueous solutions of this cluster, in a dose–response manner, with a half-maximal inhibitory concentration (IC50) of 0.94 mg-Ag/mL. Scanning electron micrographs showed the post-treatment ultrastructural changes on both MRSA and C. albicans that are characteristic of those displayed after treatment by larger silver nanoparticles.Ye

    Electrical Sintering of Silver Nanoparticle Ink Studied by In-Situ TEM Probing

    Get PDF
    Metallic nanoparticle inks are used for printed electronics, but to reach acceptable conductivity the structures need to be sintered, usually using a furnace. Recently, sintering by direct resistive heating has been demonstrated. For a microscopic understanding of this Joule heating sintering method, we studied the entire process in real time inside a transmission electron microscope equipped with a movable electrical probe. We found an onset of Joule heating induced sintering and coalescence of nanoparticles at power levels of 0.1–10 mW/m3. In addition, a carbonization of the organic shells that stabilize the nanoparticles were found, with a conductivity of 4 105 Sm−1

    Discrete plasticity in sub-10-nm-sized gold crystals

    Get PDF
    Although deformation processes in submicron-sized metallic crystals are well documented, the direct observation of deformation mechanisms in crystals with dimensions below the sub-10-nm range is currently lacking. Here, through in situ high-resolution transmission electron microscopy (HRTEM) observations, we show that (1) in sharp contrast to what happens in bulk materials, in which plasticity is mediated by dislocation emission from Frank-Read sources and multiplication, partial dislocations emitted from free surfaces dominate the deformation of gold (Au) nanocrystals; (2) the crystallographic orientation (Schmid factor) is not the only factor in determining the deformation mechanism of nanometre-sized Au; and (3) the Au nanocrystal exhibits a phase transformation from a face-centered cubic to a body-centered tetragonal structure after failure. These findings provide direct experimental evidence for the vast amount of theoretical modelling on the deformation mechanisms of nanomaterials that have appeared in recent years
    • …
    corecore