6,615 research outputs found

    Young stellar population and ongoing star formation in the HII complex Sh2-252

    Get PDF
    In this paper an extensive survey of the star forming complex Sh2-252 has been undertaken with an aim to explore its hidden young stellar population as well as to understand the structure and star formation history. This complex is composed of five embedded clusters associated with the sub-regions A, C, E, NGC 2175s and Teu 136. Using 2MASS-NIR and Spitzer-IRAC, MIPS photometry we identified 577 young stellar objects (YSOs), of which, 163 are Class I, 400 are Class II and 14 are transition disk YSOs. Spatial distribution of the candidate YSOs shows that they are mostly clustered around the sub-regions in the western half of the complex, suggesting enhanced star formation activity towards its west. Using the spectral energy distribution and optical colour-magnitude diagram based age analyses, we derived probable evolutionary status of the sub-regions of Sh2-252. Our analysis shows that the region A is the youngest (~ 0.5 Myr), the regions B, C and E are of similar evolutionary stage (~ 1-2 Myr) and the clusters NGC 2175s and Teu 136 are slightly evolved (~ 2-3 Myr). Morphology of the region in the 1.1 mm map shows a semi-circular shaped molecular shell composed of several clumps and YSOs bordering the western ionization front of Sh2-252. Our analyses suggest that next generation star formation is currently under way along this border and that possibly fragmentation of the matter collected during the expansion of the HII region as one of the major processes responsible for such stars. We observed the densest concentration of YSOs (mostly Class I, ~ 0.5 Myr) at the western outskirts of the complex, within a molecular clump associated with water and methanol masers and we suggest that it is indeed a site of cluster formation at a very early evolutionary stage, sandwiched between the two relatively evolved CHII regions A and B.Comment: 19 pages, 13 figures, Accepted for publication in MNRA

    Optical and Near-infrared survey of the stellar contents associated with the star-forming Complex Sh2-252

    Get PDF
    We present the analyses of the stellar contents associated with the HII region Sh2-252 using UBVRI photometry, slit and slitless spectroscopy along with the NIR data from 2MASS for an area ~1 degree x 1 degree. We studied the sub-regions of Sh2-252 which includes four compact-HII (CHII) regions, namely A, B, C and E and two clusters NGC 2175s and Teutsch 136 (Teu 136). Of the fifteen spectroscopically observed bright stars, eight have been identified as massive members of spectral class earlier than B3. From the spectro-photometric analyses, we derived the average distance of the region as 2.4+/-0.2 kpc and the reddening of the massive members is found to vary between 0.35 to 2.1 mag. We found that NGC 2175s and Teu 136, located towards the eastern edge of the complex are the sub-clusters of Sh2-252. The stellar surface density distribution in K-band shows clustering associated with the regions A, C, E, NGC 2175s and Teu 136. We have also identified the candidate ionizing sources of the CHII regions. 61 H_alpha emission sources are identified using slitless spectroscopy. The distribution of the H_alpha emission sources and candidate YSOs with IR excess on the V/(V-I) CMD shows that a majority of them have approximate ages between 0.1 - 5 Myr and masses in the range of 0.3 - 2.5 M_sun. The CMDs of the candidate YSOs in the individual regions also show an age spread of 0.1 - 5 Myr for each of them. We calculated the KLFs for the sub-regions A, C, E, NGC 2175s and Teu 136. Within errors, the KLFs for all the sub-regions are found to be similar and comparable to that of young clusters of age < 5 Myr. We also estimated the mass functions (MFs) of the PMS sample of the individual regions in the mass range of 0.3 - 2.5 M_sun. In general, the slopes of the MFs of all the sub-regions are found comparable to the Salpeter value.Comment: published in MNRA

    Double Diffusion Encoding Prevents Degeneracy in Parameter Estimation of Biophysical Models in Diffusion MRI

    Get PDF
    Purpose: Biophysical tissue models are increasingly used in the interpretation of diffusion MRI (dMRI) data, with the potential to provide specific biomarkers of brain microstructural changes. However, the general Standard Model has recently shown that model parameter estimation from dMRI data is ill-posed unless very strong magnetic gradients are used. We analyse this issue for the Neurite Orientation Dispersion and Density Imaging with Diffusivity Assessment (NODDIDA) model and demonstrate that its extension from Single Diffusion Encoding (SDE) to Double Diffusion Encoding (DDE) solves the ill-posedness and increases the accuracy of the parameter estimation. Methods: We analyse theoretically the cumulant expansion up to fourth order in b of SDE and DDE signals. Additionally, we perform in silico experiments to compare SDE and DDE capabilities under similar noise conditions. Results: We prove analytically that DDE provides invariant information non-accessible from SDE, which makes the NODDIDA parameter estimation injective. The in silico experiments show that DDE reduces the bias and mean square error of the estimation along the whole feasible region of 5D model parameter space. Conclusions: DDE adds additional information for estimating the model parameters, unexplored by SDE, which is enough to solve the degeneracy in the NODDIDA model parameter estimation.Comment: 22 pages, 7 figure

    A Study of starless dark cloud LDN 1570: Distance, Dust properties and Magnetic field geometry

    Full text link
    We wish to map the magnetic field geometry and to study the dust properties of the starless cloud, L1570, using multi-wavelength optical polarimetry and photometry of the stars projected on the cloud. We made R-band imaging polarimetry of the stars projected on a cloud, L1570, to trace the magnetic field orientation. We also made multi-wavelength polarimetric and photometric observations to constrain the properties of dust in L1570. We estimated a distance of 394 +/- 70 pc to the cloud using 2MASS JHKs colours. Using the values of the Serkowski parameters namely σ1\sigma_{1}, ϵˉ\bar \epsilon, {\lambda}max and the position of the stars on near infrared color-color diagram, we identified 13 stars that could possibly have intrinsic polarization and/or rotation in their polarization angles. One star, 2MASS J06075075+1934177, which is a B4Ve spectral type, show the presence of diffuse interstellar bands in the spectrum apart from showing H{\alpha} line in emission. There is an indication for the presence of slightly bigger dust grains towards L1570 on the basis of the dust grain size-indicators such as {\lambda}max and Rv values. The magnetic field lines are found to be parallel to the cloud structures seen in the 250{\mu}m images (also in 8{\mu}m and 12{\mu}m shadow images) of L1570. Based on the magnetic field geometry, the cloud structure and the complex velocity structure, we believe that L1570 is in the process of formation due to the converging flow material mediated by the magnetic field lines. Structure function analysis showed that in the L1570 cloud region the large scale magnetic fields are stronger when compared with the turbulent component of magnetic fields. The estimated magnetic field strengths suggest that the L1570 cloud region is sub-critical and hence could be strongly supported by the magnetic field lines.Comment: 26 pages, 22 figures, and 7 tables; Accepted for its publication in A&

    Deep optical survey of the stellar content of Sh2-311 region

    Full text link
    The stellar content in and around Sh2-311 region have been studied using the deep optical observations as well as near-infrared (NIR) data from 2MASS. The region contains three clusters, viz. NGC 2467, Haffner 18 and Haffner 19. We have made an attempt to distinguish the stellar content of these individual regions as well as to re-determine their fundamental parameters such as distance, reddening, age, onto the basis of a new and more extended optical and infrared photometric data set. NGC 2467 and Haffner 19 are found to be located in the Perseus arm at the distances of 5.0 ±\pm 0.4 kpc and 5.7 ±\pm 0.4 kpc, respectively, whereas Haffner 18 is located at the distance of 11.2 ±\pm 1.0 kpc. The clusters NGC 2467 and Haffner 19 might have formed from the same molecular cloud, whereas the cluster Haffner 18 is located in the outer galactic arm, i.e. the Norma-Cygnus arm. We identify 8 class II young stellar objects (YSOs) using the NIR (J−H)/(H−K)(J - H)/(H - K) two colour diagram. We have estimated the age and mass of the YSOs identified in the present work and those by Snider et al. (2009) using the V/(V−I)V/(V - I) colour-magnitude diagram. The estimated ages and mass range of the majority of the YSOs are ≲\lesssim1 Myr and ∼\sim0.4 - 3.5 \msun, respectively, indicating that these sources could be T-Tauri stars or their siblings. Spatial distribution of the YSOs shows that some of the YSOs are distributed around the H II region Sh2-311, suggesting a triggered star formation at its periphery.Comment: 19 pages, 13 figures, 9 table; Accepted for publication in New Astronom

    The Geometrical Origins of a Protein Folding Mechanism

    Get PDF
    • …
    corecore