23 research outputs found

    Evolution of pulmonary hypertension in interstitial lung disease: a journey through past, present, and future

    Get PDF
    Interstitial lung diseases (ILD) are a spectrum of disorders often complicated by pulmonary hypertension (PH) in its course. The pathophysiologic mechanism of WHO group 3 PH is different to other forms of PH. The advent of PH is a harbinger for adverse events like mortality and morbidity, implying that the PH component of disease expedites deteriorated clinical outcomes. In fact, WHO group 3 PH due to ILD has the worse prognosis among all groups of PH. Hence, early detection of PH by a comprehensive screening method is paramount. Given considerable overlap in clinical manifestations between ILD and PH, early detection of PH is often elusive. Despite, the treatment of PH due to ILD has been frustrating until recently. Clinical trials utilizing PAH-specific pulmonary vasodilators have been ongoing for years without desired results. Eventually, the INCREASE study (2018) demonstrated beneficial effect of inhaled Treprostinil to treat PH in ILD. In view of this pioneering development, a paradigm shift in clinical approach to this disease phenotype is happening. There is a renewed vigor to develop a well validated screening tool for early detection and management. Currently inhaled Treprostinil is the only FDA approved therapy to treat this phenotype, but emergence of a therapy has opened a plethora of research toward new drug developments. Regardless of all these recent developments, the overall outlook still remains grim in this condition. This review article dwells on the current state of knowledge of pre-capillary PH due to ILD, especially its diagnosis and management, the recent progresses, and future evolutions in this field

    Identification and validation of differentially expressed transcripts by RNA-sequencing of formalin-fixed, paraffin-embedded (FFPE) lung tissue from patients with Idiopathic Pulmonary Fibrosis

    Get PDF
    Background: Idiopathic Pulmonary Fibrosis (IPF) is a lethal lung disease of unknown etiology. A major limitation in transcriptomic profiling of lung tissue in IPF has been a dependence on snap-frozen fresh tissues (FF). In this project we sought to determine whether genome scale transcript profiling using RNA Sequencing (RNA-Seq) could be applied to archived Formalin-Fixed Paraffin-Embedded (FFPE) IPF tissues. Results: We isolated total RNA from 7 IPF and 5 control FFPE lung tissues and performed 50 base pair paired-end sequencing on Illumina 2000 HiSeq. TopHat2 was used to map sequencing reads to the human genome. On average similar to 62 million reads (53.4% of similar to 116 million reads) were mapped per sample. 4,131 genes were differentially expressed between IPF and controls (1,920 increased and 2,211 decreased (FDR lt 0.05). We compared our results to differentially expressed genes calculated from a previously published dataset generated from FF tissues analyzed on Agilent microarrays (GSE47460). The overlap of differentially expressed genes was very high (760 increased and 1,413 decreased, FDR lt 0.05). Only 92 differentially expressed genes changed in opposite directions. Pathway enrichment analysis performed using MetaCore confirmed numerous IPF relevant genes and pathways including extracellular remodeling, TGF-beta, and WNT. Gene network analysis of MMP7, a highly differentially expressed gene in both datasets, revealed the same canonical pathways and gene network candidates in RNA-Seq and microarray data. For validation by NanoString nCounter (R) we selected 35 genes that had a fold change of 2 in at least one dataset (10 discordant, 10 significantly differentially expressed in one dataset only and 15 concordant genes). High concordance of fold change and FDR was observed for each type of the samples (FF vs FFPE) with both microarrays (r = 0.92) and RNA-Seq (r = 0.90) and the number of discordant genes was reduced to four. Conclusions: Our results demonstrate that RNA sequencing of RNA obtained from archived FFPE lung tissues is feasible. The results obtained from FFPE tissue are highly comparable to FF tissues. The ability to perform RNA-Seq on archived FFPE IPF tissues should greatly enhance the availability of tissue biopsies for research in IPF

    Identification and validation of differentially expressed transcripts by RNA-sequencing of formalin-fixed, paraffin-embedded (FFPE) lung tissue from patients with Idiopathic Pulmonary Fibrosis

    Get PDF
    Background: Idiopathic Pulmonary Fibrosis (IPF) is a lethal lung disease of unknown etiology. A major limitation in transcriptomic profiling of lung tissue in IPF has been a dependence on snap-frozen fresh tissues (FF). In this project we sought to determine whether genome scale transcript profiling using RNA Sequencing (RNA-Seq) could be applied to archived Formalin-Fixed Paraffin-Embedded (FFPE) IPF tissues. Results: We isolated total RNA from 7 IPF and 5 control FFPE lung tissues and performed 50 base pair paired-end sequencing on Illumina 2000 HiSeq. TopHat2 was used to map sequencing reads to the human genome. On average similar to 62 million reads (53.4% of similar to 116 million reads) were mapped per sample. 4,131 genes were differentially expressed between IPF and controls (1,920 increased and 2,211 decreased (FDR lt 0.05). We compared our results to differentially expressed genes calculated from a previously published dataset generated from FF tissues analyzed on Agilent microarrays (GSE47460). The overlap of differentially expressed genes was very high (760 increased and 1,413 decreased, FDR lt 0.05). Only 92 differentially expressed genes changed in opposite directions. Pathway enrichment analysis performed using MetaCore confirmed numerous IPF relevant genes and pathways including extracellular remodeling, TGF-beta, and WNT. Gene network analysis of MMP7, a highly differentially expressed gene in both datasets, revealed the same canonical pathways and gene network candidates in RNA-Seq and microarray data. For validation by NanoString nCounter (R) we selected 35 genes that had a fold change of 2 in at least one dataset (10 discordant, 10 significantly differentially expressed in one dataset only and 15 concordant genes). High concordance of fold change and FDR was observed for each type of the samples (FF vs FFPE) with both microarrays (r = 0.92) and RNA-Seq (r = 0.90) and the number of discordant genes was reduced to four. Conclusions: Our results demonstrate that RNA sequencing of RNA obtained from archived FFPE lung tissues is feasible. The results obtained from FFPE tissue are highly comparable to FF tissues. The ability to perform RNA-Seq on archived FFPE IPF tissues should greatly enhance the availability of tissue biopsies for research in IPF

    Stanje pridelave hmelja (Humulus lupulus L.) v Sloveniji

    Get PDF
    Background\ud The increased multi-omics information on carefully phenotyped patients in studies of complex diseases requires novel methods for data integration. Unlike continuous intensity measurements from most omics data sets, phenome data contain clinical variables that are binary, ordinal and categorical.\ud \ud Results\ud In this paper we introduce an integrative phenotyping framework (iPF) for disease subtype discovery. A feature topology plot was developed for effective dimension reduction and visualization of multi-omics data. The approach is free of model assumption and robust to data noises or missingness. We developed a workflow to integrate homogeneous patient clustering from different omics data in an agglomerative manner and then visualized heterogeneous clustering of pairwise omics sources. We applied the framework to two batches of lung samples obtained from patients diagnosed with chronic obstructive lung disease (COPD) or interstitial lung disease (ILD) with well-characterized clinical (phenomic) data, mRNA and microRNA expression profiles. Application of iPF to the first training batch identified clusters of patients consisting of homogenous disease phenotypes as well as clusters with intermediate disease characteristics. Analysis of the second batch revealed a similar data structure, confirming the presence of intermediate clusters. Genes in the intermediate clusters were enriched with inflammatory and immune functional annotations, suggesting that they represent mechanistically distinct disease subphenotypes that may response to immunomodulatory therapies. The iPF software package and all source codes are publicly available.\ud \ud Conclusions\ud Identification of subclusters with distinct clinical and biomolecular characteristics suggests that integration of phenomic and other omics information could lead to identification of novel mechanism-based disease sub-phenotypes

    The DNA Repair Transcriptome in Severe COPD

    No full text
    BACKGROUND: Inadequate DNA repair is implicated in the pathogenesis of COPD. However, the mechanisms that underlie inadequate DNA repair in COPD are poorly understood.OBJECTIVES: We applied an integrative genomic approach to identify DNA repair genes and pathways associated with COPD severity.METHODS: We measured the transcriptomic changes of 419 genes involved in DNA repair and DNA damage tolerance that occur with severe COPD in three independent cohorts (n=1129). Differentially expressed genes were confirmed with RNA sequencing and used for patient clustering. Clinical and genome-wide transcriptomic differences were assessed following cluster identification. We complemented this analysis by performing GSEA, Z-score, and WGCNA methods to identify transcriptomic patterns of DNA repair pathways associated with clinical measurements of COPD severity.RESULTS: Fifteen genes involved in DNA repair and DNA damage tolerance were differentially expressed in severe COPD. K-means clustering of COPD cases based on this 15-gene signature identified three patient clusters with significant differences in clinical characteristics and global transcriptomic profiles. Increasing COPD severity was associated with downregulation of the nucleotide excision repair pathway.CONCLUSION: Systematic analysis of the lung tissue transcriptome of individuals with severe COPD identifies DNA repair responses associated with disease severity that may underlie COPD pathogenesis

    Local and Systemic CD4+ T Cell Exhaustion Reverses with Clinical Resolution of Pulmonary Sarcoidosis

    No full text
    Investigation of the Th1 immune response in sarcoidosis CD4+ T cells has revealed reduced proliferative capacity and cytokine expression upon TCR stimulation. In other disease models, such cellular dysfunction has been associated with a step-wise, progressive loss of T cell function that results from chronic antigenic stimulation. T cell exhaustion is defined by decreased cytokine production upon TCR activation, decreased proliferation, increased expression of inhibitory cell surface receptors, and increased susceptibility to apoptosis. We characterized sarcoidosis CD4+ T cell immune function in systemic and local environments among subjects undergoing disease progression compared to those experiencing disease resolution. Spontaneous and TCR-stimulated Th1 cytokine expression and proliferation assays were performed in 53 sarcoidosis subjects and 30 healthy controls. PD-1 expression and apoptosis were assessed by flow cytometry. Compared to healthy controls, sarcoidosis CD4+ T cells demonstrated reductions in Th1 cytokine expression, proliferative capacity (p<0.05), enhanced apoptosis (p<0.01), and increased PD-1 expression (p<0.001). BAL-derived CD4+ T cells also demonstrated multiple facets of T cell exhaustion (p<0.05). Reversal of CD4+ T cell exhaustion was observed in subjects undergoing spontaneous resolution (p<0.05). Sarcoidosis CD4+ T cells exhibit loss of cellular function during progressive disease that follows the archetype of T cell exhaustion
    corecore