5 research outputs found

    Conserving Ecosystem Diversity in the Tropical Andes

    Get PDF
    Documenting temporal trends in the extent of ecosystems is essential to monitoring their status but combining this information with the degree of protection helps us assess the effectiveness of societal actions for conserving ecosystem diversity and related ecosystem services. We demonstrated indicators in the Tropical Andes using both potential (pre-industrial) and recent (~2010) distribution maps of terrestrial ecosystem types. We measured long-term ecosystem loss, representation of ecosystem types within the current protected areas, quantifying the additional representation offered by protecting Key Biodiversity Areas. Six (4.8%) ecosystem types (i.e., measured as 126 distinct vegetation macrogroups) have lost >50% in extent across four Andean countries since pre-industrial times. For ecosystem type representation within protected areas, regarding the pre-industrial extent of each type, a total of 32 types (25%) had higher representation (>30%) than the post-2020 Convention on Biological Diversity (CBD) draft target in existing protected areas. Just 5 of 95 types (5.2%) within the montane Tropical Andes hotspot are currently represented with >30% within the protected areas. Thirty-nine types (31%) within these countries could cross the 30% CBD 2030 target with the addition of Key Biodiversity Areas. This indicator is based on the Essential Biodiversity Variables (EBV) and responds directly to the needs expressed by the users of these countries

    Microbiota composition in the lower respiratory tract is associated with severity in patients with acute respiratory distress by influenza

    No full text
    Abstract Several factors are associated with the severity of the respiratory disease caused by the influenza virus. Although viral factors are one of the most studied, in recent years the role of the microbiota and co-infections in severe and fatal outcomes has been recognized. However, most of the work has focused on the microbiota of the upper respiratory tract (URT), hindering potential insights from the lower respiratory tract (LRT) that may help to understand the role of the microbiota in Influenza disease. In this work, we characterized the microbiota of the LRT of patients with Influenza A using 16S rRNA sequencing. We tested if patients with different outcomes (deceased/recovered) and use of antibiotics differ in their microbial community composition. We found important differences in the diversity and composition of the microbiota between deceased and recovered patients. In particular, we detected a high abundance of opportunistic pathogens such as Granulicatella, in patients either deceased or with antibiotic treatment. Also, we found antibiotic treatment correlated with lower diversity of microbial communities and with lower probability of survival in Influenza A patients. Altogether, the loss of microbial diversity could generate a disequilibrium in the community, potentially compromising the immune response increasing viral infectivity, promoting the growth of potentially pathogenic bacteria that, together with altered biochemical parameters, can be leading to severe forms of the disease. Overall, the present study gives one of the first characterizations of the diversity and composition of microbial communities in the LRT of Influenza patients and its relationship with clinical variables and disease severity

    Gold Glyconanoparticles Combined with 91–99 Peptide of the Bacterial Toxin, Listeriolysin O, Are Efficient Immunotherapies in Experimental Bladder Tumors

    Get PDF
    This study presents proof of concept assays to validate gold nanoparticles loaded with the bacterial peptide 91–99 of the listeriolysin O toxin (GNP-LLO91–99 nanovaccines) as immunotherapy for bladder tumors. GNP-LLO91–99 nanovaccines showed adjuvant abilities as they induce maturation and activation of monocyte-derived dendritic cells (MoDCs) to functional antigen-presenting cells in healthy donors and patients with melanoma or bladder cancer (BC), promoting a Th1 cytokine pattern. GNP-LLO91–99 nanovaccines were also efficient dendritic cell inducers of immunogenic tumor death using different bladder and melanoma tumor cell lines. The establishment of a pre-clinical mice model of subcutaneous BC confirmed that a single dose of GNP-LLO91–99 nanovaccines reduced tumor burden 4.7-fold and stimulated systemic Th1-type immune responses. Proof of concept assays validated GNP-LLO91–99 nanovaccines as immunotherapy by comparison to anti-CTLA-4 or anti-PD-1 antibodies. In fact, GNP-LLO91–99 nanovaccines increased percentages of CD4+ and CD8+ T cells, B cells, and functional antigen-presenting DCs in tumor-infiltrated lymphocytes, while they reduced the levels of myeloid-derived suppressor cells (MDSC) and suppressor T cells (Treg). We conclude that GNP-LLO91–99 nanovaccines can work as monotherapies or combinatory immunotherapies with anti-CTLA-4 or anti-PD-1 antibodies for solid tumors with high T cell infiltration, such as bladder cancer or melanoma
    corecore