14,797 research outputs found

    Holonomy and submanifold geometry

    Get PDF
    We survey applications of holonomic methods to the study of submanifold geometry, showing the consequences of some sort of extrinsic version of de Rham decomposition and Berger's Theorem, the so-called Normal Holonomy Theorem. At the same time, from geometric methods in submanifold theory we sketch very strong applications to the holonomy of Lorentzian manifolds. Moreover we give a conceptual modern proof of a result of Kostant for homogeneous space

    False vacuum decay: effective one-loop action for pair creation of domain walls

    Get PDF
    An effective one-loop action built from the soliton field itself for the two-dimensional (2D) problem of soliton pair creation is proposed. The action consists of the usual mass term and a kinetic term in which the simple derivative of the soliton field is replaced by a covariant derivative. In this effective action the soliton charge is treated no longer as a topological charge but as a Noether charge. Using this effective one-loop action, the soliton-antisoliton pair production rate is calculated and one recovers Stone's exponential factor and the prefactor of Kiselev, Selivanov and Voloshin. The results are also valid straightforwardly to the problem of pair creation rate of domain walls in dimensions greater than 2.Comment: 12 pages, Late

    Dynamic heterogeneity in the glass-like monoclinic phases of some halogen methane compounds

    Get PDF
    In this work we study the heterogeneity of the dynamics on the low-temperature monoclinic phases of the simple molecular glassy systems CBrnCl4−nCBrnCl4−n, n = 0, 1, 2. In these systems the disorder comes exclusively from reorientational jumps mainly around the C3 molecular axes. The different time scales are determined by means of the analysis of the spin-lattice relaxation time obtained through Nuclear Quadrupole Resonance (NQR) technique. Results are compared with those obtained from dielectric spectroscopy, from which two α- and ÎČ-relaxation times appear. NQR results enable us to ascribe with no doubt that the existence of two relaxations is due to dynamical heterogeneities which are the consequence of the different molecular surroundings of the molecules in the asymmetric unit cell of systems here studied.Fil: Zuriaga, Mariano Jose. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de FĂ­sica Enrique Gaviola. Universidad Nacional de CĂłrdoba. Instituto de FĂ­sica Enrique Gaviola; ArgentinaFil: Perez, S. C.. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de FĂ­sica Enrique Gaviola. Universidad Nacional de CĂłrdoba. Instituto de FĂ­sica Enrique Gaviola; ArgentinaFil: Pardo, L. C.. Universidad Politecnica de Catalunya; EspañaFil: Tamarit, J. L.. Universidad Politecnica de Catalunya; Españ

    Absorption in atomic wires

    Full text link
    The transfer matrix formalism is implemented in the form of the multiple collision technique to account for dissipative transmission processes by using complex potentials in several models of atomic chains. The absorption term is rigorously treated to recover unitarity for the non-hermitian hamiltonians. In contrast to other models of parametrized scatterers we assemble explicit potentials profiles in the form of delta arrays, Poschl-Teller holes and complex Scarf potentials. The techniques developed provide analytical expressions for the scattering and absorption probabilities of arbitrarily long wires. The approach presented is suitable for modelling molecular aggregate potentials and also supports new models of continuous disordered systems. The results obtained also suggest the possibility of using these complex potentials within disordered wires to study the loss of coherence in the electronic localization regime due to phase-breaking inelastic processes.Comment: 14 pages, 15 figures. To appear in Phys. Rev.

    A Proposal for a Multi-Drive Heterogeneous Modular Pipe- Inspection Micro-Robot

    Full text link
    This paper presents the architecture used to develop a micro-robot for narrow pipes inspection. Both the electromechanical design and the control scheme will be described. In pipe environments it is very useful to have a method to retrieve information of the state of the inside part of the pipes in order to detect damages, breaks and holes. Due to the di_erent types of pipes that exists, a modular approach with di_erent types of modules has been chosen in order to be able to adapt to the shape of the pipe and to chose the most appropriate gait. The micro-robot has been designed for narrow pipes, a _eld in which there are not many prototypes. The robot incorporates a camera module for visual inspection and several drive modules for locomotion and turn (helicoidal, inchworm, two degrees of freedom rotation). The control scheme is based on semi-distributed behavior control and is also described. A simulation environment is also presented for prototypes testing

    Parameter space of experimental chaotic circuits with high-precision control parameters

    Get PDF
    ACKNOWLEDGMENTS The authors thank Professor IberĂȘ Luiz Caldas for the suggestions and encouragement. The authors F.F.G.d.S., R.M.R., J.C.S., and H.A.A. acknowledge the Brazilian agency CNPq and state agencies FAPEMIG, FAPESP, and FAPESC, and M.S.B. also acknowledges the EPSRC Grant Ref. No. EP/I032606/1.Peer reviewedPublisher PD

    Universal power law in the orientational relaxation in thermotropic liquid crystals

    Full text link
    We observe a surprisingly general power law decay at short to intermediate times in orientational relaxation in a variety of model systems (both calamitic and discotic, and also discrete) for thermotropic liquid crystals. As all these systems transit across the isotropic-nematic phase boundary, two power law relaxation regimes, separated by a plateau, emerge giving rise to a step-like feature (well-known in glassy liquids) in the single-particle second-rank orientational time correlation function. In contrast to its probable dynamical origin in supercooled liquids, we show that the power law here can originate from the thermodynamic fluctuations of the orientational order parameter, driven by the rapid growth in the second-rank orientational correlation length.Comment: Submitted to Physical Review Letter
    • 

    corecore