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We report high-resolution measurements that experimentally confirm a spiral cascade structure and

a scaling relationship of shrimps in the Chua’s circuit. Circuits constructed using this component

allow for a comprehensive characterization of the circuit behaviors through high resolution

parameter spaces. To illustrate the power of our technological development for the creation and the

study of chaotic circuits, we constructed a Chua circuit and study its high resolution parameter

space. The reliability and stability of the designed component allowed us to obtain data for long

periods of time (�21 weeks), a data set from which an accurate estimation of Lyapunov exponents

for the circuit characterization was possible. Moreover, this data, rigorously characterized by

the Lyapunov exponents, allows us to reassure experimentally that the shrimps, stable islands

embedded in a domain of chaos in the parameter spaces, can be observed in the laboratory. Finally,

we confirm that their sizes decay exponentially with the period of the attractor, a result expected to

be found in maps of the quadratic family. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4960582]

Electronic circuits provide a simple alternative to test

in the laboratory theoretical approaches developed to

characterize more complex systems. So far, however,

experiments were being carried out in circuits with

course-grained parameter values. In this work, we pre-

sent a novel electronic architecture for a potentiometer

that permits fine variations in control parameters. To

demonstrate the usefulness of this potentiometer to the

behavioral analysis of electronic circuits, we make very

long time-series measurements of this circuit for a fine

variation of its parameters and experimentally report,

for the first time, that stable islands embedded in a

domain of chaos in the parameter spaces indeed have

sizes that decay exponentially with the period of the

attractor. Periodicity with high period, confirmed by the

calculation of the Lyapunov exponents, thus requires fine

tuning of parameters to be experimentally observed.

I. INTRODUCTION

Only a few chaotic circuits have periodicity high resolu-

tion parameter spaces experimentally obtained.1–7 The rele-

vance of studying parameter spaces of nonlinear systems is

that it allows us to understand how periodic behavior, chaos,

and bifurcations come about in a nonlinear system. In fact,

parameters leading to the different behaviors are strongly cor-

related. Chaotic and periodic regions appear side by side in

all scales in universal shapes and forms. Gallas8 numerically

observed periodic structures embedded in parameter chaotic

regions, in the parameter space of the H�enon map. For some

classes of nonlinear systems, such as the one studied here, the

periodic structures appear aligned along spiral curves describ-

ing parameters for saddle-node bifurcations and super-stable

behavior and that cross transversely parameter curves con-

taining homoclinic bifurcations.9–14

Experimentally, the difficulty in obtaining parameter

spaces resides in a reliable method to vary precisely a param-

eter, usually a resistance, in a controlled, autonomous, and

reproducible fashion. Parameters are not constant and suffer

time varying alterations. This factor becomes even more

severe when the experiment is done over long time spans.

Finally, the numerical resolution of the parameters and their

nominal values cannot be achieved or reproduced experi-

mentally. Even very simple nonlinear electronic systems

cannot have their behaviors reproduced numerically; the

main reason is that the electronic components have non-ideal

characteristic curves. These factors are behind our motiva-

tion to propose an approach to obtain experimental parame-

ter spaces that are not only reliable, autonomous, and

reproducible but that can also reproduce nominal parameter

values considered in numerical experiments. High resolution

parameter space7 allows one to reproduce experimentally the

self-similar topological character observed in numerically

obtained parameter spaces.

Previous works have proposed different strategies to

construct experimental parameter spaces. Maranh~ao et al.
considered a manual or step motor control of precision

multi-turn potentiometer.1 Stoop et al.5,6 used a proto-boarda)Electronic mail: sartorelli@if.usp.br
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to do the experiment and varied by hand 490� 162 values of

a negative resistor and an inductor to produce parameter

spaces. In Ref. 2, a Keithley power source controlled by

LabView
VR

was used as one parameter and a precision poten-

tiometer manually controlled as the second parameter. The

use of a digital potentiometer would provide a reliable,

autonomous, and reproducible way to obtain parameter

spaces. However, the available digital potentiometers on the

market are limited to resistances above 1 kX and usually not

more than 256 steps are possible. In addition, their control is

not easy to carry out with typical data acquisition (DAQ)

systems or LabView
VR

. The novelty in our experimentally

obtained parameter spaces is that they are constructed by

calculating the spectrum of Lyapunov exponents from recon-

structed attractors, considering long-time series of measured

trajectories.

The technological novelty presented is the design of a dig-

ital potentiometer with precisely calibrated small resistance

steps (as low as 0.10022 X) that allows 1024 steps (or even

more) to change the resistance. With these potentiometers and

a set of resistors, switches, and relays, we were able to autono-

mously obtain a high resolution parameter space of the Chua’s

circuit (with resolutions of 400� 562 and 1023� 126 points,

varying one resistor with step sizes of 0.200001 X and another

with 0.10022 X), which could remarkably reproduce the

numerically obtained parameter spaces. This new electronic

component allowed us to carry out a detailed experimental

investigation of the parameter space of a modified Chua’s cir-

cuit, namely, we have characterized this circuit by varying the

resistance (R) and the inductor resistance (rL).15,16 Among

other accomplishments, we have demonstrated that even

higher period periodic windows and the complex topological

structure of the scenario for the appearance of periodic

behaviors can be observed experimentally. Simulations, con-

sidering a normalized equation set that models the Chua’s cir-

cuit and also the normalized version of the experimental i(V)

curve, were carried out in order to demonstrate that the occur-

rence of periodic structures observed in the high-resolution

experimental parameter space could also be numerically

observed. In particular, we showed by calculating the

Lyapunov exponents numerically and experimentally that this

parameter space presents self-similar periodic structures, the

shrimps, embedded in a domain of chaos.1–8,10,11,13,14 We also

show experimentally that those self-similar periodic regions

organize themselves in period-adding bifurcation cascades,

and whose sizes decrease exponentially as their period

grows.1,9,17,18 We also report on malformed shrimps on the

experimental parameter space, result of tiny nonlinear devia-

tions close to the junction of two linear parts from a symmetric

piecewise linear i(V) curve.

We have considered Chua’s circuit,19 with 5 linear parts,

to perform our study experimentally and numerically

because this circuit has been studied in many applications

such as in chaos control,20,21 synchronization22,23 and others,

but the use of a higher precision potentiometers here pro-

posed can be used to characterize, study, and precisely con-

trol the behavior of any electronic equipment.

II. EXPERIMENTAL AND NUMERICAL ASPECTS

Let us start describing the digital potentiometer. Its dia-

gram is presented in Fig. 1, but only 3 of the set of 10 resis-

tors in series are shown to illustrate its structure. The 10 pin

left connector stands for the digital data coming from input/

output (I/O) digital ports of the DAQ board. A 60 Ah 12.0 V

car battery was used to drive the digital potentiometers. The

digital potentiometer idea was captured from the structure of

FIG. 1. Schematics of the designed

adjustable digital potentiometer. Only

three of ten resistor circuits of the in

series association are shown in order to

clearly present their components. On

the right connector, t1 and t2 represent

the output resistance to be connected

to the Chua’s circuit. The circuit is

feed by 60 Ah 12.0 V car battery. See

text for component and respective

function description.
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a switched resistor digital to analog converter which contains

a parallel resistor network. The calibration was done using a

Keithley digital multimeter model 2001 in the four wire

mode, i.e., in order to subtract leads resistance. The relays of

the series association were switched by transistor driver cir-

cuits connected to I/O digital ports of the data acquisition

board used for control and data acquisition. Thus, it was pos-

sible to write a ten digit binary number in order to select one

of the 1024 possible combinations. The digital potentiometer

is used to provide the resistances R and rL in the circuit,

which take up values R¼ r and rL ¼ r by following the

equation:

r ¼ step � ðbit0 � 20 þ bit1 � 21 þ � � � þ bit9 � 29Þ: (1)

For R we used two-step values: 0.20001 X and 2.00002 X
and for rL just one value for step, i.e., 0.10022 X.

The Chua’s circuit scheme is presented in Fig. 2,

constructed in a single face circuit board with the same

scheme of Ref. 24, i.e., C1 ¼ 23:50 nF, C2 ¼ 235:0 nF, and

L¼ 42.30 mH. These values were obtained from the combi-

nation of passive commercial available components and

measured with a Keithley digital multimeter model 2001 or

an impedance analyzer for the reactive components. The

measurement of components allowed the choice of the clos-

est possible values to components, better than the factory

precision. We evaluate the oscillation main frequency as

a rough approximation by 1=ð2pðLC2Þ1=2Þ which gives

1596 Hz. Further increase on frequency, i.e., by reducing

passive component values, seems to destroy periodic struc-

tures that are observed in this circuit, thus this oscillation

frequency was the best choice. It was built with TL084

Operational Amplifiers (OPAMPs) and was fed by two

12.0 V, 7 Ah no-break batteries.

The five-fold piecewise linear element that provides the

nonlinear character of the Chua’s circuit consists of two

operational amplifiers (OPAMP) and the resistances R1 to

R6. Its iðVC1Þ characteristic curve was defined and normal-

ized by the scheme x ¼ VC1=BP and idðxÞ ¼ iðxÞ=ðm0BPÞ
with m0 ¼ �4:156315 mS and BP¼ 1.38501 V. Here, S

stands for the inverse resistance unity. This curve is pre-

sented in Fig. 3, with 5-fold linear fittings used for simula-

tions with the significant digits limited by the fitting

accuracy, given by

idðxÞ

¼

�32:51240� 4:76600x x < �5:43000;

x� 0:82999 �5:43000�x <�1:00000;

1:84957x jxj � 1:00000;

xþ 0:86378 1:00000 < x � 5:92900;

37:35590� 5:15200x x > 5:92900:

8>>>>>><
>>>>>>:

(2)

The electronic inductor is defined by two OPAMPs con-

nected to the resistors R7, R8, R9, R10, and rL together with

the capacitor C3. This is a gyrator circuit with inductance as

L ¼ ðC3R7R9R10Þ=R8.

The points in the circuit where we take measurements

can be seen in Fig. 2 by the probe points x, y, and P. They

correspond to the voltages across the capacitors C1 and C2

and the third variable, the current IL, is obtained from the

relation IL ¼ ðVP � VC2Þ=ðR7 þ rLÞ, where VP is the voltage

indicated by the P probe. The voltage across C1, passed by a

simple OPAMP buffer, was measured by a National

FIG. 2. Chua’s circuit using the elec-

tronic inductor and indicating the mea-

suring points x, y and the P point. The

current through the inductor is defined

as IL ¼ ðVP � VC2Þ=ðR7 þ rLÞ. Here,

Vccþ ¼þ12 V and Vcc� ¼�12 V.

FIG. 3. idðxÞ characteristic of the circuit presented in Fig. 2. The linear fit-

tings are presented in the figure. The equations corresponding to linear fit-

tings are presented in the experimental section. The normalization

considered equations x ¼ VC1=BP and idðxÞ ¼ iðxÞ=ðmoBPÞ and the parame-

ters mo ¼ �4:156315 mS and BP¼ 1.38501 V.
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Instruments data acquisition (DAQ) interface, model PCI-

6259 with 16 bit resolution, maximum sampling rate of 1.25

Msamples/s, for data storage. Also, LabView was used to

data acquisition and analysis.2,3 A Keithley 2400 voltage/

current source in series with the Chua’s diode was applied to

obtain the i(V) data.

For each time series, the potentiometers R and rL were

switched by a LabView routine with values previously deter-

mined and calibrated to give precise equivalent steps. After

calibration, the 1024 values of each potentiometer were

tested with a linear fitting, giving slopes equal to steps up to

four significant digits. We have carried out experiments with

the Chua’s circuit recollecting time series for the calculation

of the Lyapunov exponents. Time series were generated with

a 50 Ksamples/s and a 7 s length. As transient, after setting

the pair of parameters R and rL, a 50 s waiting time was con-

sidered. It is worth commenting that data acquisition to

obtain 562� 400 meshes of time series lasted 21 weeks.

The fact that the experimental circuit could reproduce

many relevant structures obtained numerically implies that

the general bifurcation scenario of these periodic windows of

the parameter space is robust to external perturbations and

should be expected to be observed in nature. The circuit is

not switched off between subsequent measurements, only at

the highest R value when recharge was necessary. Each

restart of the system has changed the attractor initial condi-

tions. However, because the parameters were varied from

high R to lower R values and from low rL to higher rL values,

the trajectory at restart was always going towards the same

fixed points or simple periodic orbits. By starting at parame-

ters leading to such attractors provides results as if the sys-

tem was never switched off. Thus, this form of covering the

parameter space allows best reproducibility since the next

attractor for a renewed set of parameters has its initial condi-

tion from the state of the circuit set with parameters very

close to those parameters. This allows the experiments and

the simulations to be performed without any experimental or

numerical discontinuity in the state variables.

Experimental characteristic curves of the Chua’s circuit

are often asymmetric. However, some authors have done

simulations by considering a symmetric piecewise-linear

function. For us, successful reproduction of the experimental

parameter spaces is also a consequence of the fact that our

correspondent simulations were performed by considering

the non-symmetric idðxÞ give in Eq. (2) to integrate Chua’s

differential equations. We have considered the same set of

differential equations and normalized parameters presented

in full detail in Ref. 14.

III. RESULTS AND DISCUSSION

The parameter space in Fig. 4(a) shows by colors the

values of the largest Lyapunov exponent k, calculated by the

method of Sano and Sawada25 from the 400� 562 experi-

mental time series with R and rL as the control parameters.

The simulated parameter space in Fig. 4(b) considered also

the values of k obtained from time series generated by 1600

values of R and 562 values of rL in the same range of the

experimental data. In the case of simulations, k was obtained

from the tangent space method, and the values are in units

of integration step. This form of calculating k allows faster

simulations but produces absolute values of the exponents dis-

tinct from the corresponding experimental values. The time

unit of the experimental Lyapunov exponent was rescaled to

match the exponents from numerical data. A larger range

parameter space is presented in Fig. 4(a). In Fig. 4(b), we

present the correspondent simulations, generated with a

0.10022 X step, as described in Section II. The color scales

were defined for the experimental data with a smooth color

variation from white to black to represent the range of values

of k, with k < 0, corresponding to fixed point and periodic

attractors, and from black to red to represent the range of

values k 2 ½0; 0:2�. The transition between periodic to chaotic

orbits occurring through saddle-node bifurcations or through

a period doubling cascade is characterized by the shift of

colors between yellow and orange. In both parameter spaces

of Fig. 4, it is possible to identify the occurrence of complex

periodic structures embedded in a chaotic domain and orga-

nized in a spiral structure.8,13,26

We can see, in Fig. 5, high-resolution amplifications of

the inner region of the red boxes shown in Fig. 4. Figure 5(a)

shows the experimental data, obtained with a 0.20001 X res-

olution in R. This parameter space has ten times the R reso-

lution as compared with that used in Fig. 4(a). In Fig. 5(b),

we present a parameter space constructed by considering a

600� 600 mesh of values for R and rL for the corresponding

FIG. 4. Lyapunov parameter spaces of the Chua’s circuit. White to black

stands for periodic orbits and for fixed points; yellow to red color for chaotic

orbits. (a) Experimental parameter space diagram associating color scale to

k. Resolution of parameters R and rL is 2 X and 0.1 X, respectively, and we

have considered a mesh with 400 values for R and 562 values for rL. (b)

Corresponding simulated parameter space obtained from using the model of

Ref. 15 but with a 5-fold piece-wise idðxÞ Eq. (2). Resolution of parameters

R and rL is 0.5 X and 0.1 X, respectively, and we have considered a mesh

with 1600 values for R and 562 values for rL.

083107-4 de Sousa et al. Chaos 26, 083107 (2016)



simulations. Notice that both figures are remarkably similar,

showing the same complex features. In particular, both fig-

ures show details of the complex self-similar organization of

periodic regions. Simulations in fact cannot capture all

features of the experiments. These features of experimental

nature are a noise in the color distribution of the parameter

space that makes the boundaries to chaos of the complex

periodic windows distorted. This is associated with thermal,

electrical noise and the unavoidable analog to digital conver-

sion noise. We estimated from the measured time series that

this noise is between 1 mV and 2 mV. This represents three

to six times the least significant bits of the DAQ board which

is close to the minimum noise experimentally realizable.

The second effect is associated with temperature and initial

conditions. Between consecutive days, the temperature may

vary a few 	C and this changes the values of resistances and

the diode and the voltage of transistors inside the OPAMPs.

We have experienced that the changes are minimum in the

component values for a 10 	C change, a variation rarely

observed during the measurements. Digital potentiometers

were calibrated by adjusting each in series resistor to the

closest multiple of 2n of the step as possible. The accuracy of

the step was determined by linear fittings of the resistance

versus step plot. The precision on potentiometer steps at con-

stant temperature are about 10 ppm with errors of 20 ppm

and 7 ppm specifically. The 1 X step potentiometer is fitted

as ð1:0000160:00002ÞX; the 0.2 X step potentiometer as

ð0:2000160:00002ÞX; and the 0.1 X step potentiometer as

ð0:1002260:00001ÞX. The external ambient temperature

changes 11 	C between the minimal and maximal

temperature of a day most of the year in the city of Itajub�a. In

a closed environment as our laboratory, this change is, how-

ever, smaller and about 6 	C. Considering this information,

we used 10 	C as a maximal temperature variation and

obtained from datasheet of resistors and capacitors used that

this represents a 250 ppm per 	C change in resistors, a

600 ppm per 	C change in capacitors, and a drift of 0.018 mV

per 	C change in the typical 3 mV input offset voltage of the

TL084 OPAMP used. This represents a change of 0.00250 X
on the 1.00001 X step digital potentiometer. Our ability to

reproduce specific parameters of an experiment is so accurate

that we can identify tiny shade variations of the Lyapunov

exponent associated to temperature variations.

We have also studied the topological properties of

the periodic windows appearing in the parameter spaces of

Fig. 4. For that, we created the periodicity parameter spaces

in Fig. 6(a), for the experimental time-series, and in

Fig. 6(b), for numerical time-series, indicating by colors the

period P of the such attractors. In Fig. 7, we verify the exis-

tence of expected scaling laws for the largest width of the

periodic windows DR as a function of the period P of the

corresponding attractors in the parameter spaces of Fig. 4, by

fitting the following scaling:

FIG. 5. Magnification of Figs. 4(a) and 4(b). Color scheme is the same used

in Fig. 4. In (a). experimental data with ten times the R resolution compared

with that used in Fig. 4(a). In (b), a 600� 600 mesh parameter space with

the same high resolution of the parameter R.

FIG. 6. Periodicity parameter spaces. Color code for the period of the attrac-

tor is presented in the right-hand side band. Notice an odd period-adding

bifurcation cascade initiating at the top left corner and heading towards the

center of the spiral.

083107-5 de Sousa et al. Chaos 26, 083107 (2016)



DR ¼ ae�bP; (3)

with a and b representing fitting parameters. This result led

us to conclude that our experimentally and numerically

obtained periodic windows have a complex structure as

expected in Refs. 1, 2, 9, and 27. It can be seen from Fig. 6

that periodic windows organize themselves in an odd period

adding bifurcation cascade starting from the top left corner

of the parameter space towards the spiral center, and whose

attractors present period varying from 3 to 17. Window sizes

reduce as the period increases and their width DR in X
reaches its minimal value of 2 X for periods 15 and 17.

Fitting results in Fig. 7 indicate that the decay exponents,

b ¼ 0:3060:04 (experimental results) and b ¼ 0:3960:09

(numerical results), are in the same order of magnitude of

the largest positive Lyapunov exponent of the chaotic attrac-

tor in the chaotic regions surrounding the shrimps, as

expected.1,17 According to Ref. 17, the structure and decay

rate of the shrimp sizes is related to their surrounding posi-

tive Lyapunov exponents, by DR ¼ ae�2PhT H , where hT is the

topological entropy of the chaotic attractors (in units of

Poincar�e crossings) appearing for parameters neighboring

the periodic regions and H ¼ ~hp

hT
, with ~hp representing the

Lyapunov exponent of the periodic windows measured at the

superstable point (in units of Poincar�e crossings). We denote
~k to be the positive Lyapunov exponent of the chaotic attrac-

tors appearing for parameters neighboring the periodic

regions, but in units of Poincar�e crossings, calculated by
~k ¼ khTi, where hTi is the average return time of the chaotic

trajectory to a Poincar�e section. Notice that in Figs. 4 and 5,

the Lyapunov exponent is in units of time. For the quadratic

map family, H u 1, which we adopt in this work. We also

notice that hT is an upper bound for the largest Lyapunov

exponent, so hT 
 ~k. Therefore, if we estimate b in Eq. (3)

by

~b ¼ 2~k; (4)

we will conclude that ~b � b. In fact, as one can see from

Fig. 8, we have that for most of the points ~b � b. This con-

firms that the scenario we have observed numerically and

experimentally in the Chua’s circuit follows the same

expected scaling laws for periodic windows, believed to be

general for quadratic maps.17

IV. CONCLUSIONS

We have successfully built autonomous, reliable, and

reproducible digital potentiometers that allowed precise

measurements of the set of experimental physical parameters

of electronic circuits. As an application of the power of our

component, we obtained high-resolution experimental

parameter spaces of Chua’s circuit that is remarkably similar

to the one obtained by simulations using the same set of

physical parameters values. Two of these specially designed

digital potentiometers were used to vary the circuit main

resistances and the inductor-resistance, and due to their ther-

mal stability in the experimental parameter spaces we could

obtain islands of periodicity embedded in a domain of chaos,

the shrimps, whose size windows decay exponentially with

the period of the attractors. To the best of our knowledge,

this work provides, for the first time, experimental Lyapunov

exponent parameter spaces of a spiral cascade structure of

several shrimps of electronic circuits. Also, with respect to

simulations, we show that considering features such as

5-fold idðxÞ and careful consideration of its equations drawn

directly from measurements, it was performed simulations

with results close to the ones measured experimentally with

regard to the shape of the periodic structures, its exponential

decay law, as well as the overall range of Lyapunov expo-

nent values. The very high precision and stability on the

resistance steps improved the definition of periodic structure

borders when compared with other methods of parameter

variation. With the structures in the parameter spaces

FIG. 7. Fitting of the periodic window largest width DR with respect to the

attractor period P, considering the exponential scaling of Eq. (3). We consid-

ered the error bars of 2 X in the experimental calculations and 0.5 X in the

simulated ones.

FIG. 8. Estimation of the decay exponent, ~b, from the positive Lyapunov

exponents of attractors appearing along the border of the shrimps with the

chaotic regions as a function of their periods (see Eq. (4)). Black squares

stand for experimental values (based on Fig. 4) and red circles for simula-

tions (based on Fig. 5). The dashed black and red lines represent the scaling

exponent b, measured from the fittings in Fig. 7, for experimental and simu-

lation data, respectively. For these calculations, we have considered the

Lyapunov exponent in units of logðexpÞ per Poincar�e crossing. Notice that

in Figs. 4 and 5 the shown Lyapunov exponent is in units of bits per time

unit.
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well-defined, the exponential decay law of their characteris-

tic sizes against periodicity, expected to be found in qua-

dratic maps, was determined with the results close to those

of the simulations.
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