5 research outputs found

    Increased Malbranchea pulchella β-glucosidase production and its application in agroindustrial residue hydrolysis: A research based on experimental designs

    No full text
    β-Glucosidases are a limiting factor in the conversion of cellulose to glucose for the subsequent ethanol production. Here, β-glucosidase production by Malbranchea pulchella was optimized using Composite Central Designs and Response Surface Methodologies from a medium designed. The coefficient of determination (R2) was 0.9960, F-value was very high, and the lack of fit was found to be non-significant. This indicates a statistic valid and predictive result. M. pulchella enzymatic extract was successfully tested as an enzymatic cocktail in a mixture design using sugarcane bagasse, soybean hull and barley bagasse. We proved that the optimization of the β-glucosidase production and the application in hydrolysis using unexpansive biomass and agricultural wastes can be accomplished by means of statistical methodologies. The strategy presented here can be useful for the improvement of enzyme production and the hydrolysis process, arising as an alternative for bioeconomy

    Screening Botryosphaeria species for lipases: Production of lipase by Botryosphaeria ribis EC-01 grown on soybean oil and other carbon sources

    No full text
    Nine isolates of Botryosphaeria spp. were screened for lipases when cultivated on eight different plant seed oils and glycerol, and all produced lipases Botryosphaeria ribis EC-01 produced highest lipase litres on soybean oil and glycerol, while eight isolates of Botryosphaeria rhodina produced significantly lower enzyme tares. B ribis EC-01 produced lipase when grown on different fatty acids. surfactants, carbohydrates and triacylglycerols, with highest enzyme titres produced on Triton X-100-emulsified stearic (3167 U/mL), palmitic (283.5 U/mL) and oleic (247.4 U/mg) acids, and soybean oil (105 6U/mL), as well as castor oil (191.2 U/mg); an enhancement of 9-fold over soybean oil-grown cultures. Glycerol was also a good substrate for lipase production. The crude lipase extract was optimally active at pH 8.0 and 55 C, stable between 30 and 55 C and pH 1-10, and tolerant to 50%(v/v) glycerol, methanol and ethanol. The crude lipase showed affinity for substrates of short, average and long-chain fatty acids (different esters of p-nitrophenol and triacylglycerols). Zymograms developed with 4-methylumbelliferyl-butyrate showed two bands of lipolytic activity at 45 and 15 kDa. This is the first report on the production of lipases by B. ribis grown on these different carbon sources. (C) 2009 Elsevier B.V. All rights reserved.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Bioprospection and characterization of the amylolytic activity by filamentous fungi from Brazilian Atlantic Forest

    No full text
    <div><p>Abstract Filamentous fungi are widely diverse and ubiquitous organisms. Such biodiversity is barely known, making room for a great potential still to be discovered, especially in tropical environments - which are favorable to growth and species variety. Filamentous fungi are extensively applied to the production of industrial enzymes, such as the amylases. This class of enzymes acts in the hydrolysis of starch to glucose or maltooligosaccharides. In this work twenty-five filamentous fungi were isolated from samples of decomposing material collected in the Brazilian Atlantic Forest. The two best amylase producers were identified as Aspergillus brasiliensis and Rhizopus oryzae. Both are mesophilic, they grow well in organic nitrogen-rich media produce great amounts of glucoamylases. The enzymes of A. brasiliensis and R. oryzae are different, possibly because of their phylogenetical distance. The best amylase production of A. brasiliensis occurred during 120 hours with initial pH of 7.5; it had a better activity in the pH range of 3.5-5.0 and at 60-75°C. Both fungal glucoamylase had wide pH stability (3-8) and were activated by Mn2+. R. oryzae best production occurred in 96 hours and at pH 6.5. Its amylases had a greater activity in the pH range of 4.0-5.5 and temperature at 50-65ºC. The most significant difference between the enzymes produced by both fungi is the resistance to thermal denaturation: A. brasiliensis glucoamylase had a T50 of 60 minutes at 70ºC. The R. oryzae glucoamylase only had a residual activity when incubated at 50°C with a 12 min T50.</p></div
    corecore