4 research outputs found

    Measurement and Computation of Movement of Bromide Ions and Carbofuran in Ridged Humic-Sandy Soil

    Get PDF
    Water flow and pesticide transport in the soil of fields with ridges and furrows may be more complex than in the soil of more level fields. Prior to crop emergence, the tracer bromide ion and the insecticide carbofuran were sprayed on the humic-sandy soil of a potato field with ridges and furrows. Rainfall was supplemented by sprinkler irrigation. The distribution of the substances in the soil profile of the ridges and furrows was measured on three dates in the potato growing season. Separate ridge and furrow systems were simulated by using the pesticide emission assessment at regional and local scales (PEARL) model for pesticide behavior in soil–plant systems. The substances travelled deeper in the furrow soil than in the ridge soil, because of runoff from the ridges to the furrows. At 19 days after application, the peak of the bromide distribution was measured to be in the 0.1–0.2 m layer of the ridges, while it was in the 0.3–0.5 m layer of the furrows. After 65 days, the peak of the carbofuran distribution in the ridge soil was still in the 0.1 m top layer, while the pesticide was rather evenly distributed in the top 0.6 m of the furrow soil. The wide ranges in concentration measured with depth showed that preferential water flow and substance transport occurred in the sandy soil. Part of the bromide ion distribution was measured to move faster in soil than the computed wave. The runoff of water and pesticide from the ridges to the furrows, and the thinner root zone in the furrows, are expected to increase the risk of leaching to groundwater in ridged fields, in comparison with more level fields

    Pesticide Leaching from Agricultural Fields with Ridges and Furrows

    Get PDF
    In the evaluation of the risk of pesticide leaching to groundwater, the soil surface is usually assumed to be level, although important crops like potato are grown on ridges. A fraction of the water from rainfall and sprinkler irrigation may flow along the soil surface from the ridges to the furrows, thus bringing about an extra load of water and pesticide on the furrow soil. A survey of the literature reveals that surface-runoff from ridges to furrows is a well-known phenomenon but that hardly any data are available on the quantities of water and pesticide involved. On the basis of a field experiment with additional sprinkler irrigation, computer simulations were carried out with the Pesticide Emission Assessment at Regional and Local scales model for separate ridge and furrow systems in a humic sandy potato field. Breakthrough curves of bromide ion (as a tracer for water flow) and carbofuran (as example pesticide) were calculated for 1-m depth in the field. Bromide ion leached comparatively fast from the furrow system, while leaching from the ridge system was slower showing a maximum concentration of about half of that for the furrow system. Carbofuran breakthrough from the furrow system began about a month after application and increased steadily to substantial concentrations. Because the transport time of carbofuran in the ridge soil was much longer, no breakthrough occurred in the growing season. The maximum concentration of carbofuran leaching from the ridge–furrow field was computed to be a factor of six times as high as that computed for the corresponding level field. The study shows that the risk of leaching of pesticides via the furrow soil can be substantially higher than that via the corresponding level field soil

    European scenarios for exposure of soil organisms to pesticides

    No full text
    Standardised exposure scenarios play an important role in European pesticide authorisation procedures (a scenario is a combination of climate, weather and crop data to be used in exposure models). The European Food Safety Authority developed such scenarios for the assessment of exposure of soil organisms to pesticides. Scenarios were needed for both the concentration in total soil and for the concentration in the liquid phase. The goal of the exposure assessment is the 90th percentile of the exposure concentration in the area of agricultural use of a pesticide in each of three regulatory European zones (North, Centre and South). A statistical approach was adopted to find scenarios that are consistent with this exposure goal. Scenario development began with the simulation of the concentration distribution in the entire area of use by means of a simple analytical model. In the subsequent two steps, procedures were applied to account for parameter uncertainty and scenario uncertainty (i.e. the likelihood that a scenario that is derived for one pesticide is not conservative enough for another pesticide). In the final step, the six scenarios were selected by defining their average air temperature, soil organic-matter content and their soil textural class. Organic matter of the selected scenarios decreased in the order North-Centre-South. Because organic matter has a different effect on the concentration in total soil than it has on the concentration in the liquid phase, the concentration in total soil decreased in the order North-Centre-South whereas the concentration in the liquid phase decreased in the opposite order. The concentration differences between the three regulatory zones appeared to be no more than a factor of two. These differences were comparatively small in view of the considerable differences in climate and soil properties between the three zones
    corecore