12 research outputs found

    Origin and function of short-latency inputs to the neural substrates underlying the acoustic startle reflex

    Get PDF
    The acoustic startle reflex (ASR) is a survival mechanism of alarm, which rapidly alerts the organism to a sudden loud auditory stimulus. In rats, the primary ASR circuit encompasses three serially connected structures: cochlear root neurons (CRNs), neurons in the caudal pontine reticular nucleus (PnC), and motoneurons in the medulla and spinal cord. It is well-established that both CRNs and PnC neurons receive short-latency auditory inputs to mediate the ASR. Here, we investigated the anatomical origin and functional role of these inputs using a multidisciplinary approach that combines morphological, electrophysiological and behavioral techniques. Anterograde tracer injections into the cochlea suggest that CRNs somata and dendrites receive inputs depending, respectively, on their basal or apical cochlear origin. Confocal colocalization experiments demonstrated that these cochlear inputs are immunopositive for the vesicular glutamate transporter 1 (VGLUT1). Using extracellular recordings in vivo followed by subsequent tracer injections, we investigated the response of PnC neurons after contra-, ipsi-, and bilateral acoustic stimulation and identified the source of their auditory afferents. Our results showed that the binaural firing rate of PnC neurons was higher than the monaural, exhibiting higher spike discharges with contralateral than ipsilateral acoustic stimulations. Our histological analysis confirmed the CRNs as the principal source of short-latency acoustic inputs, and indicated that other areas of the cochlear nucleus complex are not likely to innervate PnC. Behaviorally, we observed a strong reduction of ASR amplitude in monaural earplugged rats that corresponds with the binaural summation process shown in our electrophysiological findings. Our study contributes to understand better the role of neuronal mechanisms in auditory alerting behaviors and provides strong evidence that the CRNs-PnC pathway mediates fast neurotransmission and binaural summation of the ASR

    Direct and indirect connections between cochlear root neurons and facial motor neurons: Pathways underlying the acoustic pinna reflex in the albino rat

    No full text
    Cochlear root neurons (CRNs) are involved in the acoustic startle reflex, which is widely used in behavioral models of sensorimotor integration. A short-latency component of this reflex, the auricular reflex, promotes pinna movements in response to unexpected loud sounds. However, the pathway involved in the auricular component of the startle reflex is not well understood. We hypothesized that the auricular reflex is mediated by direct and indirect inputs from CRNs to the motoneurons responsible for pinna movement, which are located in the medial subnucleus of the facial motor nucleus (Mot7). To assess whether there is a direct connection between CRNs and auricular motoneurons in the rat, two neuronal tracers were used in conjunction: biotinylated dextran amine, which was injected into the cochlear nerve root, and Fluoro-Gold, which was injected into the levator auris longus muscle. Under light microscopy, close appositions were observed between axon terminals of CRNs and auricular motoneurons. The presence of direct synaptic contact was confirmed at the ultrastructural level. To confirm the indirect connection, biotinylated dextran amine was injected into the auditory-responsive portion of the caudal pontine reticular nucleus, which receives direct input from CRNs. The results confirm that the caudal pontine reticular nucleus also targets the Mot7 and that its terminals are concentrated in the medial subnucleus. Therefore, it is likely that CRNs innervate auricular motoneurons both directly and indirectly, suggesting that these connections participate in the rapid auricular reflex that accompanies the acoustic startle reflex. 漏 2008 Wiley-Liss, Inc

    Organization of the Zone of Transition between the Pretectum and the Thalamus, with Emphasis on the Pretectothalamic Lamina

    No full text
    The zone of transition between the pretectum, derived from prosomere 1, and the thalamus, derived from prosomere 2, is structurally complex and its understanding has been hampered by cytoarchitectural and terminological confusion. Herein, using a battery of complementary morphological approaches, including cytoarchitecture, myeloarchitecture and the expression of molecular markers, we pinpoint the features or combination of features that best characterize each nucleus of the pretectothalamic transitional zone of the rat. Our results reveal useful morphological criteria to identify and delineate, with unprecedented precision, several [mostly auditory] nuclei of the posterior group of the thalamus, namely the pretectothalamic lamina (PTL; formerly known as the posterior limitans nucleus), the medial division of the medial geniculate body (MGBm), the suprageniculate nucleus (SG), and the ethmoid, posterior triangular and posterior nuclei of the thalamus. The PTL is a sparsely-celled and fiber rich flattened nucleus apposed to the lateral surface of the anterior pretectal nucleus that marks the border between the pretectum and the thalamus; this structure stains selectively with the Wisteria floribunda agglutinin (WFA), and is essentially immunonegative for the calcium binding protein parvalbumin. The MGBm, located medial to the ventral division of the medial geniculate body, can be unequivocally identified by the large size of many of its neurons, its dark immunostaining for parvalbumin, and its rather selective staining for WFA. The SG, which extends for a considerable caudorostral distance and deviates progressively from the MGB, is characterized by its peculiar cytoarchitecture, the paucity of myelinated fibers, and the conspicuous absence of staining for calretinin; indeed, in many calretinin-stained sections, the SG stands out as a blank spot. Because most of these nuclei are small and show unique anatomical relationships, the information provided in this article will facilitate the interpretation of the results of experimental manipulations aimed at the auditory thalamus and improve the design of future investigations. Moreover, the previously neglected proximity between the MGBm and the caudal region of the scarcely known PTL raises the possibility that certain features or roles traditionally attributed to the MGBm may actually belong to the PTL

    A fast cholinergic modulation of the primary acoustic startle circuit in rats

    No full text
    Cochlear root neurons (CRNs) are the first brainstem neurons which initiate and participate in the full expression of the acoustic startle reflex. Although it has been suggested that a cholinergic pathway from the ventral nucleus of the trapezoid body (VNTB) conveys auditory prepulses to the CRNs, the neuronal origin of the VNTB-CRNs projection and the role it may play in the cochlear root nucleus remain uncertain. To determine the VNTB neuronal type which projects to CRNs, we performed tract-tracing experiments combined with mechanical lesions, and morphometric analyses. Our results indicate that a subpopulation of non-olivocochlear neurons projects directly and bilaterally to CRNs via the trapezoid body. We also performed a gene expression analysis of muscarinic and nicotinic receptors which indicates that CRNs contain a cholinergic receptor profile sufficient to mediate the modulation of CRN responses. Consequently, we investigated the effects of auditory prepulses on the neuronal activity of CRNs using extracellular recordings in vivo. Our results show that CRN responses are strongly inhibited by auditory prepulses. Unlike other neurons of the cochlear nucleus, the CRNs exhibited inhibition that depended on parameters of the auditory prepulse such as intensity and interstimulus interval, showing their strongest inhibition at short interstimulus intervals. In sum, our study supports the idea that CRNs are involved in the auditory prepulse inhibition of the acoustic startle reflex, and confirms the existence of multiple cholinergic pathways that modulate the primary acoustic startle circuit. 漏 2013 Springer-Verlag Berlin Heidelberg

    Unpredictable chronic mild stress exerts anxiogenic-like effects and activates neurons in the dorsal and caudal region and in the lateral wings of the dorsal raphe nucleus

    No full text
    In previous studies, we verified that exposure to unpredictable chronic mild stress (UCMS) facilitates avoidance responses in the elevated T-maze (ETM) and increased Fos-immunoreactivity in different brain structures involved in the regulation of anxiety, including the dorsal raphe (DR). Since, it has been shown that the DR is composed of distinct subpopulations of serotonergic and non-serotonergic neurons, the present study investigated the pattern of activation of these different subnuclei of the region in response to this stress protocol. Male Wistar rats were either unstressed or exposed to the UCMS procedure for two weeks and, subsequently, analyzed for Fos-immunoreactivity (Fos-ir) in serotonergic cells of the DR. To verify if the anxiogenic effects observed in the ETM could be generalized to other anxiety models, a group of animals was also tested in the light/dark transition test after UCMS exposure. Results showed that the UCMS procedure decreased the number of transitions and increased the number of stretched attend postures in the model, an anxiogenic effect. UCMS exposure also increased Fos-ir and the number of double-labeled neurons in the mid-rostral subdivision of the dorsal part of the DR and in the mid-caudal region of the lateral wings. In the caudal region of the DR there was a significant increase in the number of Fos-ir. No significant effects were found in the other DR subnuclei. These results corroborate the idea that neurons of specific subnuclei of the DR regulate anxiety responses and are differently activated by chronic stress exposure.Funda莽茫o de Amparo 脿 Pesquisa do Estado de S茫o Paulo (FAPESP)Conselho Nacional de Desenvolvimento Cient铆fco e Tecnol贸gico (CNPq)Coordena莽茫o de Aperfei莽oamento de Pessoal de N铆vel Superior (CAPES

    Chronic administration of risperidone in a rat model of schizophrenia: A behavioural, morphological and molecular study

    No full text
    In the present work we analyzed the effect of the chronic administration of risperidone (2mg/kg over 65 days) on behavioural, morphological and molecular aspects in an experimental model of schizophrenia obtained by bilateral injection of ibotenic acid into the ventral hippocampus of new-born rats. Our results show that during their adult lives the animals with hippocampal lesions exhibit different alterations, mainly at behavioural level and in the gene expression of dopamine D2 and 5-HT2A receptors. However, at morphological level the study performed on the prefrontal cortex did not reveal any alterations in either the thickness or the number of cells immunoreactive for c-Fos, GFAP, CBP or PV. Overall, risperidone administration elicited a trend towards the recovery of the values previously altered by the hippocampal lesion, approaching the values seen in the animals without lesions. It may be concluded that the administration of risperidone in the schizophrenia model employed helps to improve the altered functions, with no significant negative effects. 漏 2013
    corecore