99 research outputs found

    Nucleosynthesis in stellar explosions: Type Ia supernovae, classical novae, and type I X-ray bursts

    Get PDF
    Nuclear astrophysics aims at understanding the cosmic origin of the chemical elements and the energy generation in stars. It constitutes a truly multidisciplinary arena that combines tools, developments, and achievements in theoretical astrophysics, observational astronomy, cosmochemistry, and nuclear physics: the emergence of high-energy astrophysics with space-borne observatories has opened new windows to observe the Universe, from a novel panchromatic perspective; supercomputers have provided astrophysicists with the required computational capabilities to study the evolution of stars in a multidimensional framework; cos-mochemists have isolated tiny pieces of stardust embedded in primitive meteorites, giving clues on the processes operating in stars as well as on the way matter condenses to form solids; and nuclear physicists have measured reactions near stellar energies, using stable and radioactive ion beam facilities. This paper shows provides a comprehensive insight into the nucleosynthesis accompanying stellar explosions, with particular emphasis on thermonuclear supernovae, classical novae, and type I X-ray bursts.Peer ReviewedPostprint (published version

    Ernst K. Zinner (1937-2015)

    Get PDF
    Postprint (published version

    Application of the THM to the investigation of reactions induced by unstable nuclei: the 18F(p,a)15O case

    Get PDF
    The Trojan Horse Method is applied to the investigation of the18F(p,a)15O reaction, by extractingthe quasi free contribution to the2H(18F,a15O)nprocess. For the first time the method is applied to a reaction ofastrophysical importance involving a radioactive nucleus. After investigating the reaction mechanism populat-ing thea+15O+nexit channel, we could extract the18F(p,a)15O cross section and calculate the astrophysicalfactor over the 0-1 MeV energy interval. The possibility of exploring the cross section with no need of ex-trapolation allowed us to to point out the possible occurrence of a 7/2+state at 126 keV, which would stronglyinfluence the trend of the astrophysical factor at the energies of astrophysical interest. However, the low energyresolution prevents us to draw definite conclusions. Possible astrophysical consequences are also discussed,motivating further work on this reaction.Peer ReviewedPostprint (published version

    On the parallelization of stellar evolution codes

    Get PDF
    Multidimensional nucleosynthesis studies with hundreds of nuclei linked through thousands of nuclear processes are still computationally prohibitive. To date, most nucleosynthesis studies rely either on hydrostatic/hydrodynamic simulations in spherical symmetry, or on post-processing simulations using temperature and density versus time profiles directly linked to huge nuclear reaction networks. Parallel computing has been regarded as the main permitting factor of computationally intensive simulations. This paper explores the different pros and cons in the parallelization of stellar codes, providing recommendations on when and how parallelization may help in improving the performance of a code for astrophysical applications. We report on different parallelization strategies succesfully applied to the spherically symmetric, Lagrangian, implicit hydrodynamic code SHIVA, extensively used in the modeling of classical novae and type I X-ray bursts. When only matrix build-up and inversion processes in the nucleosynthesis subroutines are parallelized (a suitable approach for post-processing calculations), the huge amount of time spent on communications between cores, together with the small problem size (limited by the number of isotopes of the nuclear network), result in a much worse performance of the parallel application than the 1-core, sequential version of the code. Parallelization of the matrix build-up and inversion processes in the nucleosynthesis subroutines is not recommended unless the number of isotopes adopted largely exceeds 10,000. In sharp contrast, speed-up factors of 26 and 35 have been obtained with a parallelized version of SHIVA, in a 200-shell simulation of a type I X-ray burstcarried out with two nuclear reaction networks: a reduced one, consisting of 324 isotopes and 1392 reactions, and a more extended network with 60 6 nuclides and 3551 nuclear interactions. Maximum speed-ups of ~41 (324-isotope network) and ~85 (606-isotope network), are also predicted for 200 cores, stressing that the number of shells of the computational domain constitutes an effective upper limit for the maximum number of cores that could be used in a parallel application.Peer ReviewedPostprint (published version

    Experimentally well-constrained masses of 27P and 27S: implications for studies of explosive binary systems

    Get PDF
    The mass of 27P is expected to impact the X-ray burst (XRB) model predictions of burst light curves and the composition of the burst ashes, but large uncertainties and inconsistencies still exist in the reported 27P masses. We have used the Ăź-decay spectroscopy of 27S to determine the most precise mass excess of 27P to date to be keV, which is 63 keV (2.3s) higher and a factor of 3 more precise than the value recommended in the 2016 Atomic Mass Evaluation. Based on the new 27P mass, the P reaction rate and its uncertainty were recalculated using Monte Carlo techniques. We also estimated the previously unknown mass excess of 27S to be 17678(77) keV, based on the measured Ăź-delayed two-proton energy and the Coulomb displacement energy relations. The impact of these well-constrained masses and reaction rates on the modeling of the explosive astrophysical scenarios has been investigated by post-processing XRB and hydrodynamic nova models. Compared to the model calculations based on the masses and rates from databases, the abundance of in the burst ashes is increased by a factor of 2.4, while no substantial change was found in the XRB energy generation rate or the light curve. Our calculation also suggests that 27S is not a significant waiting point in the rapid proton capture process, and the change of the P reaction rate is not sufficiently large to affect the conclusion previously drawn on the nova contribution to the synthesis of galactic 26Al.Postprint (published version

    Recent advances in the modelling of classical novae and type I X-ray bursts

    Get PDF
    Classical nova outbursts and type I X-ray bursts are thermonuclear stellar explosions driven by charged-particle reactions. Extensive numerical simulations of nova explosions have shown that the accreted envelopes attain peak temperatures between 0.1 and 0.4 GK, for about several hundred seconds, and therefore, their ejecta is expected to show signatures of significant nuclear activity. Indeed, it has been claimed that novae play some role in the enrichment of the interstellar medium through a number of intermediate-mass elements. This includes 17O, 15N, and 13C, systematically overproduced in huge amounts with respect to solar abundances, with a lower contribution to a number of species with A<40, such as 7Li, 19F, or 26Al. In this review, we present new 1-D hydrodynamic models of classical nova outbursts, from the onset of accretion up to the explosion and ejection phases. Special emphasis is put on their gross observational properties (including constraints from meteoritic presolar grains and potential gamma-ray signatures) and on their associated nucleosynthesis. Multidimensional models of mixing at the core-envelope interface during outbursts will also be presented. The impact of nuclear uncertainties on the final yields will be also outlined. Detailed analysis of the relevant reactions along the main nuclear path for type I X-ray bursts has only been scarcely addressed, mainly in the context of parameterized one-zone models. Here, we present a detailed study of the nucleosynthesis and nuclear processes powering type I X-ray bursts. The reported bursts have been computed by means of a spherically symmetric (1D), Lagrangian, hydrodynamic code, linked to a nuclear reaction network that contains 325 isotopes (from 1H to 107Te), and 1392 nuclear processes. These evolutionary sequences, followed from the onset of accretion up to the explosion and expansion stages, have been performed for two different metallicities to explore the dependence between the extension of the main nuclear flow and the initial metal content. We carefully analyze the physical parameters that determine the light curve (including recurrence times, ratios between persistent and burst luminosities, or the extent of the envelope expansion). Results are in qualitative agreement with the observed properties of some well-studied bursting sources.Postprint (published version

    Coordinated analysis of two graphite grains from the CO3.0 LAP 031117 meteorite: First identification of a CO Nova graphite and a presolar iron sulfide subgrain

    Get PDF
    Presolar grains constitute remnants of stars that existed before the formation of the solar system. In addition to providing direct information on the materials from which the solar system formed, these grains provide ground-truth information for models of stellar evolution and nucleosynthesis. Here we report the in-situ identification of two unique presolar graphite grains from the primitive meteorite LaPaz Icefield 031117. Based on these two graphite grains, we estimate a bulk presolar graphite abundance of 5-3+7 ppm in this meteorite. One of the grains (LAP-141) is characterized by an enrichment in 12C and depletions in 33,34S, and contains a small iron sulfide subgrain, representing the first unambiguous identification of presolar iron sulfide. The other grain (LAP-149) is extremely 13C-rich and 15N-poor, with one of the lowest 12C/13C ratios observed among presolar grains. Comparison of its isotopic compositions with new stellar nucleosynthesis and dust condensation models indicates an origin in the ejecta of a low-mass CO nova. Grain LAP-149 is the first putative nova grain that quantitatively best matches nova model predictions, providing the first strong evidence for graphite condensation in nova ejecta. Our discovery confirms that CO nova graphite and presolar iron sulfide contributed to the original building blocks of the solar system.Peer ReviewedPostprint (author's final draft

    De King Kong a Einstein : la fĂ­sica en la ciencia ficciĂłn

    Get PDF
    La ciencia ficción es un poderoso vehículo con el que pueden traspasarse incluso los límites de la imaginación humana. Frankenstein, Supermán, Terminator y otros mixtos de la ciencia ficción constituyen, a su vez, una vía alternativa de aproximación al mundo de la ciencia. La búsqueda de los principios que rigen el universo se convierte así en un reto fascinante, lúdico, sorprendente, que permite desarrollar un saludable espíritu crítico y escéptico. Es éste un viaje alucinante al mundo de la física, con paradas en la cuarta dimensión, la invisibilidad o los enigmáticos viajes en el tiempo

    Progress on nuclear reaction rates affecting the stellar production of 26Al

    Get PDF
    The radioisotope 26Al is a key observable for nucleosynthesis in the Galaxy and the environment of the early Solar System. To properly interpret the large variety of astronomical and meteoritic data, it is crucial to understand both the nuclear reactions involved in the production of 26Al in the relevant stellar sites and the physics of such sites. These range from the winds of low- and intermediate-mass asymptotic giant branch stars; to massive and very massive stars, both their Wolf–Rayet winds and their final core-collapse supernovae (CCSN); and the ejecta from novae, the explosions that occur on the surface of a white dwarf accreting material from a stellar companion. Several reactions affect the production of 26Al in these astrophysical objects, including (but not limited to) 25Mg(p, ¿)26Al, 26Al(p, ¿)27Si, and 26Al(n, p/a). Extensive experimental effort has been spent during recent years to improve our understanding of such key reactions. Here we present a summary of the astrophysical motivation for the study of 26Al, a review of its production in the different stellar sites, and a timely evaluation of the currently available nuclear data. We also provide recommendations for the nuclear input into stellar models and suggest relevant, future experimental work.Postprint (published version
    • …
    corecore