7 research outputs found

    Aplicação de método estatístico no estudo da influência do peróxido de hidrogênio e do borohidreto de sódio na síntese de nanoparticulas de prata (AGNPS)

    Get PDF
    Nanomateriais vem atraindo bastante atenção nos últimos anos em virtude das suas propriedades que permitemaplicações em diversas áreas como: química, física, medicina, fármacos e engenharias. No universo dosnanomaterias, as nanopartículas de prata (AgNPs) tem despertado o interesse de vários pesquisadores devidoao seu potencial bactericida. Estudos recentes correlacionaram a eficácia da atividade antimicrobiana com arazão superfície-volume, morfologia, polidispersividade, tamanho de partícula e estabilidade das AgNPs.Este trabalho teve como objetivo compreender a influência do borohidreto de sódio (NaBH4) e do peróxidode hidrogênio (H2O2) nas propriedades das AgNPs. A síntese das AgNPs foi realizada através da reduçãoquímica de íons de prata com NaBH4, na presença de H2O2 e Citrato de Sódio (SCT). Para determinar a influênciacausada pelo H2O2 e NaBH4, foram empregados diferentes variações de concentrações e volumes eao resultado foi aplicado o Teste de Fisher para determinar a significância entre essas variáveis. As amostrasforam caracterizadas por Espalhamento Dinâmico de Luz (DLS) e Potencial Zeta. Como resultado, o Testede Fisher em conjunto com os valores obtidos de tamanho de partícula, estabilidade e polidispersividade determinaramvariáveis estatisticamente iguais, ou seja, as variáveis que não influenciam estatisticamente naformação das partículas, bem como, a influência causada pela variação do H2O2 e do NaBH4 nas propriedadesdas AgNPs. Por fim, a variação da concentração de NaBH4 e volume de H2O2 causam efeitos sob o diâmetro,estabilidade e polidispersividade de AgNPs os quais foram estudados e aqui estão descritos.Palavras-chave: Nanociência, nanopartículas de prata, Teste de Fisher

    Physicochemical, Morphological, and Cytotoxic Properties of Brazilian Jackfruit (Artocarpus heterophyllus) Starch Scaffold Loaded with Silver Nanoparticles

    No full text
    Due to the physical, thermal, and biological properties of silver nanoparticles (AgNPs), as well as the biocompatibility and environmental safety of the naturally occurring polymeric component, polysaccharide-based composites containing AgNPs are a promising choice for the development of biomaterials. Starch is a low-cost, non-toxic, biocompatible, and tissue-healing natural polymer. The application of starch in various forms and its combination with metallic nanoparticles have contributed to the advancement of biomaterials. Few investigations into jackfruit starch with silver nanoparticle biocomposites exist. This research intends to explore the physicochemical, morphological, and cytotoxic properties of a Brazilian jackfruit starch-based scaffold loaded with AgNPs. The AgNPs were synthesized by chemical reduction and the scaffold was produced by gelatinization. X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy coupled with energy-dispersive spectroscopy (SEM-EDS), and Fourier-transform infrared spectroscopy (FTIR) were used to study the scaffold. The findings supported the development of stable, monodispersed, and triangular AgNPs. XRD and EDS analyses demonstrated the incorporation of silver nanoparticles. AgNPs could alter the scaffold’s crystallinity, roughness, and thermal stability without affecting its chemistry or physics. Triangular anisotropic AgNPs exhibited no toxicity against L929 cells at concentrations ranging from 6.25 × 10−5 to 1 × 10−3 mol·L−1, implying that the scaffolds might have had no adverse effects on the cells. The scaffolds prepared with jackfruit starch showed greater crystallinity and thermal stability, and absence of toxicity after the incorporation of triangular AgNPs. These findings indicate that jackfruit is a promising starch source for developing biomaterials

    Synergistic and Antibiofilm Effects of the Essential Oil from <i>Croton conduplicatus</i> (Euphorbiaceae) against Methicillin-Resistant <i>Staphylococcus aureus</i>

    No full text
    Bacterial resistance refers to the ability of bacteria to resist the action of some antibiotics due to the development of adaptation and resistance mechanisms. It is a serious public health problem, especially for diseases caused by opportunistic bacteria. In this context, the search for new drugs, used alone or in combination, appears as an alternative for the treatment of microbial infections, and natural products, such as essential oils, are important in this process due to their structural diversity, which increases the probability for antimicrobial action. The objective of this study was to extract and identify the chemical components of the essential oil from Croton conduplicatus (EOCC), to evaluate the antimicrobial activity, to investigate the effect of the interaction between the EOCC and different antibiotics and to evaluate its antibiofilm potential. The EOCC was obtained by hydrodistillation. Based on chemical characterisation, 70 compounds were identified, with 1.8 cineole (13.15%), p-cymene (10.68%), caryophyllene (9.73%) and spathulenol (6.36%) being the major constituents. The minimum inhibitory concentration (MIC) values of EOCC were 256 and 512 µg mL−1 for methicillin-sensitive and -resistant Staphylococcus aureus strains (MSSA and MRSA), respectively. The combinations of EOCC with the antibiotics oxacillin and ampicillin were synergistic (OXA/EOCC and AMP/EOCC combined decreased the OXA MIC and AMP MIC to 0.5 and 0.25 for MSSA, respectively, and OXA/EOCC and AMP/EOCC combined decreased the OXA MIC and the AMP MIC to 1 and 0.5 for MRSA, respectively) and could modify the resistance profile of MSSA and MRSA strains. The results indicated that EOCC was also able to partially inhibit biofilm formation. Our study presents important information about the chemical composition of EOCC and its antimicrobial potential and provides a reference to determine the mechanisms of action of EOCC and its use in pharmaceutical formulations

    Chitosan/Gelatin Scaffolds Loaded with Jatropha mollissima Extract as Potential Skin Tissue Engineering Materials

    No full text
    This work aimed to develop chitosan/gelatin scaffolds loaded with ethanolic extract of Jatropha mollissima (EEJM) to evaluate the influence of its content on the properties of these structures. The scaffolds were prepared by freeze-drying, with different EEJM contents (0&ndash;10% (w/w)) and crosslinked with genipin (0.5% (w/w)). The EEJM were characterized through High Performance Liquid Chromatography coupled to a Diode Array Detector (HPLC-DAD), and the determination of three secondary metabolites contents was accomplished. The physical, chemical and biological properties of the scaffolds were investigated. From the HPLC-DAD, six main substances were evidenced, and from the quantification of the total concentration, the condensed tannins were the highest (431.68 &plusmn; 33.43 mg&middot;g&minus;1). Spectroscopy showed good mixing between the scaffolds&rsquo; components. Adding and increasing the EEJM content did not significantly influence the properties of swelling and porosity, but did affect the biodegradation and average pore size. The enzymatic biodegradation test showed a maximum weight loss of 42.89 within 28 days and reinforced the efficiency of genipin in crosslinking chitosan-based materials. The addition of the extract promoted the average pore sizes at a range of 138.44&ndash;227.67 &micro;m, which is compatible with those reported for skin regeneration. All of the scaffolds proved to be biocompatible for L929 cells, supporting their potential application as skin tissue engineering materials

    Use of Piranha Solution as An Alternative Route to Promote Bioactivation of PEEK Surface with Low Functionalization Times

    No full text
    This study aimed to achieve bioactivity on the PEEK surface using piranha solution through a lower functionalization time. For this purpose, the functionalization occurred with piranha solution and 98% sulfuric acid in the proportions of 1:2, 1:1, and 2:1 at periods of 30, 60, and 90 s. The samples treated for longer times at higher concentrations registered the characteristic spectroscopy band associated with sulfonation. Additionally, both chemical treatments allowed the opening of the aromatic ring, increasing the number of functional groups available and making the surface more hydrophilic. The piranha solution treatments with higher concentrations and longer times promoted greater heterogeneity in the surface pores, which affected the roughness of untreated PEEK. Furthermore, the treatments induced calcium deposition on the surface during immersion in SBF fluid. In conclusion, the proposed chemical modifications using sulfuric acid SPEEK 90 and, especially, the piranha solution PEEK-PS 2:1-90, were demonstrated to be promising in promoting the rapid bioactivation of PEEK-based implants

    Physicomechanical and thermal analysis of bulk-fill and conventional composites

    No full text
    Abstract The aim of this study was to evaluate the degree of conversion (DC) and the thermal stability of bulk-fill and conventional composite resins. Eleven composite resin samples were prepared to evaluate the DC, Vickers microhardness (VMH), mass and residue/particle loss, glass transition temperature (Tg), enthalpy, and linear coefficient of thermal expansion (CTE) using infrared spectroscopy (FTIR), microdurometer analyses, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dilatometry (DIL). The data were subjected to statistical analysis, with a significance level of 95%. DC and VMH were not influenced by the polymerized side of the sample, and statistical differences were recorded only among the materials. Decomposition temperature, melting, and mass and residue loss were dependent on the material and on the evaluation condition (polymerized and non-polymerized). Tg values were similar between the composites, without statistically significant difference, and CTE ranged from 10.5 to 37.1 (10-6/°C), with no statistical difference between the materials. There was a moderate negative correlation between CTE and the % of load particles, by weight. Most resins had a DC above that which is reported in the literature. TGA, Tg, and CTE analyses showed the thermal behavior of the evaluated composites, providing data for future research, assisting with the choice of material for direct or semidirect restorations, and helping choose the appropriate temperature for increasing the DC of such materials

    A novel N95 respirator with chitosan nanoparticles: mechanical, antiviral, microbiological and cytotoxicity evaluations

    No full text
    Abstract Background It is known that some sectors of hospitals have high bacteria and virus loads that can remain as aerosols in the air and represent a significant health threat for patients and mainly professionals that work in the place daily. Therefore, the need for a respirator able to improve the filtration barrier of N95 masks and even inactivating airborne virus and bacteria becomes apparent. Such a fact motivated the creation of a new N95 respirator which employs chitosan nanoparticles on its intermediate layer (SN95 + CNP). Results The average chitosan nanoparticle size obtained was 165.20 ± 35.00 nm, with a polydispersity index of 0.36 ± 0.03 and a zeta potential of 47.50 ± 1.70 mV. Mechanical tests demonstrate that the SN95 + CNP respirator is more resistant and meets the safety requisites of aerosol penetration, resistance to breath and flammability, presenting higher potential to filtrate microbial and viral particles when compared to conventional SN95 respirators. Furthermore, biological in vitro tests on bacteria, fungi and mammalian cell lines (HaCat, Vero E6 and CCL-81) corroborate the hypothesis that our SN95 + CNP respirator presents strong antimicrobial activity and is safe for human use. There was a reduction of 96.83% of the alphacoronavirus virus and 99% of H1N1 virus and MHV-3 betacoronavirus after 120 min of contact compared to the conventional respirator (SN95), demonstrating that SN95 + CNP have a relevant potential as personal protection equipment. Conclusions Due to chitosan nanotechnology, our novel N95 respirator presents improved mechanical, antimicrobial and antiviral characteristics
    corecore