92 research outputs found

    Exploration of Human Serum Albumin Binding Sites by Docking and Molecular Dynamics Flexible LigandProtein Interactions

    Get PDF
    Five-nanosecond molecular dynamics (MD) simulations were performed on human serum albumin (HSA) to study the conformational features of its primary ligand binding sites (I and II). Additionally, 11 HSA snapshots were extracted every 0.5 ns to explore the binding affinity (Kd) of 94 known HSA binding drugs using a blind docking procedure. MD simulations indicate that there is considerable flexibility for the protein, including the known sites I and II. Movements at HSA sites I and II were evidenced by structural analyses and docking simulations. The latter enabled the study and analysis of the HSA–ligand interactions of warfarin and ketoprofen (ligands binding to sites I and II, respectively) in greater detail. Our results indicate that the free energy values by docking (Kd observed) depend upon the conformations of both HSA and the ligand. The 94 HSA–ligand binding Kd values, obtained by the docking procedure, were subjected to a quantitative structure-activity relationship (QSAR) study by multiple regression analysis. The best correlation between the observed and QSAR theoretical (Kd predicted) data was displayed at 2.5 ns. This study provides evidence that HSA binding sites I and II interact specifically with a variety of compounds through conformational adjustments of the protein structure in conjunction with ligand conformational adaptation to these sites. These results serve to explain the high ligandpromiscuity of HSA

    Involvement of Free Radicals in the Development and Progression of Alzheimer’s Disease

    Get PDF
    Alzheimer’s disease (AD) is a major dementia related to an overproduction of free radicals (FRs), which leads to the generation of oxidative stress in brain tissue. Amyloid beta-peptide of 42 amino acid residues (Aβ1–42) is the main source of FRs in patients with AD. βA1–42 results from hydrolysis of the amyloid precursor protein by β-secretase in a process known as the amyloidogenic pathway. During βA1–42 aggregation, the peptide interacts with various transition metals to produce hydrogen peroxide (H2O2) by the Fenton reaction, generating the hydroxyl radical (•OH), which damages lipids, proteins, and nucleic acids, thereby contributing to neurodegeneration. In addition, βA1–42 is recognized by microglial receptors; it activates these cells, causing overproduction of superoxide anion (O2•−) by NADPH oxidase; O2•− is also converted into H2O2 and finally to •OH in the Fenton reaction. Other factors that contribute to oxidative stress during microglial activation are the overproduction of nitric oxide and interleukins and the overexpression of some enzymes, including cyclooxygenase and inducible nitric oxide synthase, all of which contribute to FR production. Currently, various models in vitro and in vivo exist that permit quantification of O2•− and H2O2 and determination of the effects of these reactive oxygen species

    Docking Simulation of the Binding Interactions of Saxitoxin Analogs Produced by the Marine Dinoflagellate Gymnodinium catenatum to the Voltage-Gated Sodium Channel Nav1.4

    Get PDF
    Saxitoxin (STX) and its analogs are paralytic alkaloid neurotoxins that block the voltage-gated sodium channel pore (Nav), impeding passage of Na+ ions into the intracellular space, and thereby preventing the action potential in the peripheral nervous system and skeletal muscle. The marine dinoflagellate Gymnodinium catenatum produces an array of such toxins, including the recently discovered benzoyl analogs, for which the mammalian toxicities are essentially unknown. We subjected STX and its analogs to a theoretical docking simulation based upon two alternative tri-dimensional models of the Nav1.4 to find a relationship between the binding properties and the known mammalian toxicity of selected STX analogs. We inferred hypothetical toxicities for the benzoyl analogs from the modeled values. We demonstrate that these toxins exhibit different binding modes with similar free binding energies and that these alternative binding modes are equally probable. We propose that the principal binding that governs ligand recognition is mediated by electrostatic interactions. Our simulation constitutes the first in silico modeling study on benzoyl-type paralytic toxins and provides an approach towards a better understanding of the mode of action of STX and its analogs

    In Silico Screening of Drugs That Target Different Forms of E Protein for Potential Treatment of COVID-19

    Get PDF
    Recently the E protein of SARS-CoV-2 has become a very important target in the potential treatment of COVID-19 since it is known to regulate different stages of the viral cycle. There is biochemical evidence that E protein exists in two forms, as monomer and homopentamer. An in silico screening analysis was carried out employing 5852 ligands (from Zinc databases), and performing an ADMET analysis, remaining a set of 2155 compounds. Furthermore, docking analysis was performed on specific sites and different forms of the E protein. From this study we could identify that the following ligands showed the highest binding affinity: nilotinib, dutasteride, irinotecan, saquinavir and alectinib. We carried out some molecular dynamics simulations and free energy MM–PBSA calculations of the protein–ligand complexes (with the mentioned ligands). Of worthy interest is that saquinavir, nilotinib and alectinib are also considered as a promising multitarget ligand because it seems to inhibit three targets, which play an important role in the viral cycle. On the other side, saquinavir was shown to be able to bind to E protein both in its monomeric as well as pentameric forms. Finally, further experimental assays are needed to probe our hypothesis derived from in silico studies

    Estudio in silico de la afinidad de 2-Ciano-3,4- dihidro-1H-pirimidinas sobre canales de potasio dependiente de voltaje-Kᵥ+

    Get PDF
    Mediante herramientas de modelado molecular se valoró la afinidad de nuevos compuestos azaheterociclicos altamente nitrogenados, con núcleo de 2-ciano-3,4-dihidro-1H-pirimidina, sobre canales de potasio (K+). El número y naturaleza de las interacciones ligando-receptor se determinaron in silico mediante ensayos de docking dirigido y ciego sobre un canal de potasio KcsA (código PDB:1j95). Los resultados preliminares condujeron a identificar una región lipofílica común para los ligandos 1-5 y el ligando de referencia (4-aminopiridina). De manera importante, el valor de la energía libre de Gibbs (ΔG) estimado para los primeros ligandos demuestra que estos poseen una mejor afinidad hacia este sitio activo. Los resultados derivados de este estudio abren nuevas alternativas para la investigación de nuevos agentes farmacológicos con potencial aplicación en el campo de la química medicinal.Using molecular modeling tools, affinity of novel, highly nitrogenous 2-cyano-3,4-dihydro-1H-pyrimidine core-based azaheterocyclic compounds on potassium channels (K+) was explored. Quantity and nature of ligand-receptor interactions were determined in silico by directed and blind docking studies using KcsA potassium channel obtained from Protein Data Bank (code: 1j95). Preliminary results led to identify a lipophilic pocket which exhibit highly affinity toward compounds 1-5 and reference ligand (4-aminopyridine). Importantly, Gibbs free energy value (ΔG) computed for the former ligands shows that they possess the best affinity for such active site. This preliminary results support further studies for development of novel pharmacological agents with potential application in Medicinal chemistry field

    Síntesis y relación estructura-actividad de derivados Arílicos como posibles inhibidores de Colinesterasas

    No full text
    Tesis (Doctorado en Ciencias en Investigación en Medicina), Instituto Politécnico Nacional, SEPI, ESM, 2006, 1 archivo PDF, (70 páginas). tesis.ipn.m

    Structural and energetic analysis to provide insight residues of CYP2C9, 2C11 and 2E1 involved in valproic acid dehydrogenation selectivity

    Get PDF
    AbstractDocking and molecular dynamics (MD) simulation have been two computational techniques used to gain insight about the substrate orientation within protein active sites, allowing to identify potential residues involved in the binding and catalytic mechanisms. In this study, both methods were combined to predict the regioselectivity in the binding mode of valproic acid (VPA) on three cytochrome P-450 (CYP) isoforms CYP2C9, CYP2C11, and CYP2E1, which are involved in the biotransformation of VPA yielding reactive hepatotoxic intermediate 2-n-propyl-4-pentenoic acid (4nVPA). There are experimental data about hydrogen atom abstraction of the C4-position of VPA to yield 4nVPA, however, there are not structural evidence about the binding mode of VPA and 4nVPA on CYPs. Therefore, the complexes between these CYP isoforms and VPA or 4nVPA were studied to explore their differences in binding and energetic stabilization. Docking results showed that VPA and 4nVPA are coupled into CYPs binding site in a similar conformation, but it does not explain the VPA hydrogen atom abstraction. On the other hand, MD simulations showed a set of energetic states that reorient VPA at the first ns, then making it susceptible to a dehydrogenation reaction. For 4nVPA, multiple binding modes were observed in which the different states could favor either undergo other reaction mechanism or ligand expulsion from the binding site. Otherwise, the energetic and entropic contribution point out a similar behavior for the three CYP complexes, showing as expected a more energetically favorable binding free energy for the complexes between CYPs and VPA than with 4nVPA

    Implication of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase and Its Inhibitors in Alzheimer’s Disease Murine Models

    No full text
    Alzheimer’s disease (AD) is one of the main human dementias around the world which is constantly increasing every year due to several factors (age, genetics, environment, etc.) and there are no prevention or treatment options to cure it. AD is characterized by memory loss associated with oxidative stress (OS) in brain cells (neurons, astrocytes, microglia, etc.). OS can be produced by amyloid beta (Aβ) protein aggregation and its interaction with metals, mitochondrial damage and alterations between antioxidants and oxidant enzymes such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. NADPH oxidase produces reactive oxygen species (ROS) and it is overexpressed in AD, producing large amounts of superoxide anions and hydrogen peroxide which damage brain cells and the vasculature. In addition, it has been reported that NADPH oxidase causes an imbalance of pH which could also influence in the amyloid beta (Aβ) production. Therefore, NADPH oxidase had been proposed as a therapeutic target in AD. However, there are no drugs for AD treatment such as an NADPH oxidase inhibitor despite great efforts made to stabilize the ROS production using antioxidant molecules. So, in this work, we will focus our attention on NADPH oxidase (NOX2 and NOX4) in AD as well as in AD models and later discuss the use of NADPH oxidase inhibitor compounds in AD

    Predicted 3D Model of the Rabies Virus Glycoprotein Trimer

    No full text
    The RABVG ectodomain is a homotrimer, and trimers are often called spikes. They are responsible for the attachment of the virus through the interaction with nicotinic acetylcholine receptors, neural cell adhesion molecule (NCAM), and the p75 neurotrophin receptor (p75NTR). This makes them relevant in viral pathogenesis. The antigenic structure differs significantly between the trimers and monomers. Surfaces rich in hydrophobic amino acids are important for trimer stabilization in which the C-terminal of the ectodomain plays an important role; to understand these interactions between the G proteins, a mechanistic study of their functions was performed with a molecular model of G protein in its trimeric form. This verified its 3D conformation. The molecular modeling of G protein was performed by a I-TASSER server and was evaluated via a Rachamandran plot and ERRAT program obtained 84.64% and 89.9% of the residues in the favorable regions and overall quality factor, respectively. The molecular dynamics simulations were carried out on RABVG trimer at 310 K. From these theoretical studies, we retrieved the RMSD values from Cα atoms to assess stability. Preliminary model of G protein of rabies virus stable at 12 ns with molecular dynamics was obtained

    Effect of New Analogs of Hexyloxy Phenyl Imidazoline on Quorum Sensing in Chromobacterium violaceum and In Silico Analysis of Ligand-Receptor Interactions

    No full text
    The increasing common occurrence of antibiotic-resistant bacteria has become an urgent public health issue. There are currently some infections without any effective treatment, which require new therapeutic strategies. An attractive alternative is the design of compounds capable of disrupting bacterial communication known as quorum sensing (QS). In Gram-negative bacteria, such communication is regulated by acyl-homoserine lactones (AHLs). Triggering of QS after bacteria have reached a high cell density allows them to proliferate before expressing virulence factors. Our group previously reported that hexyloxy phenylimidazoline (9) demonstrated 71% inhibitory activity of QS at 100 μM (IC50 = 90.9 μM) in Chromobacterium violaceum, a Gram-negative bacterium. The aim of the present study was to take 9 as a lead compound to design and synthesize three 2-imidazolines (13–15) and three 2-oxazolines (16–18), to be evaluated as quorum-sensing inhibitors on C. violaceum CV026. We were looking for compounds with a higher affinity towards the Cvi receptor of this bacterium and the ability to inhibit QS. The binding mode of the test compounds on the Cvi receptor was explored with docking studies and molecular dynamics. It was found that 8-pentyloxyphenyl-2-imidazoline (13) reduced the production of violacein (IC50 = 56.38 μM) without affecting bacterial growth, suggesting inhibition of quorum sensing. Indeed, compound 13 is apparently one of the best QS inhibitors known to date. Molecular docking revealed the affinity of compound 13 for the orthosteric site of N-hexanoyl homoserine lactone (C6-AHL) on the CviR protein. Ten amino acid residues in the active binding site of C6-AHL in the Cvi receptor interacted with 13, and 7 of these are the same as those interacting with AHL. Contrarily, 8-octyloxyphenyl-2-imidazoline (14), 8-decyloxyphenyl-2-imidazoline (15), and 9-decyloxyphenyl-2-oxazoline (18) bound only to an allosteric site and thus did not compete with C6-AHL for the orthosteric site
    corecore