15 research outputs found

    Immunocytochemical Evidence of the Localization of the Crumbs Homologue 3 Protein (CRB3) in the Developing and Mature Mouse Retina

    Get PDF
    CRB3 (Crumbs homologue 3), a member of the CRB protein family (homologous to the Drosophila Crumbs), is expressed in different epithelium-derived cell types in mammals, where it seems to be involved in regulating the establishment and stability of tight junctions and in ciliogenesis. This protein has been also detected in the retina, but little is known about its localization and function in this tissue. Our goal here was to perform an in-depth study of the presence of CRB3 protein in the mouse retina and to analyze its expression during photoreceptor ciliogenesis and the establishment of the plexiform retinal layers. Double immunofluorescence experiments for CRB3 and well-known markers for the different retinal cell types were performed to study the localization of the CRB3 protein. According to our results, CRB3 is present from postnatal day 0 (P0) until adulthood in the mouse retina. It is localized in the inner segments (IS) of photoreceptor cells, especially concentrated in the area where the connecting cilium is located, in their synaptic terminals in the outer plexiform layer (OPL), and in sub-populations of amacrine and bipolar cells in the inner plexiform layer (IPL)

    CA 15-3 prognostic biomarker in SARS-CoV-2 pneumonia.

    Get PDF
    The severity of lung involvement is the main prognostic factor in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Carbohydrate antigen 15-3 (CA 15-3), a marker of lung damage and fibrosis, could help predict the prognosis of SARS-CoV-2 pneumonia. This was a retrospective and observational study. CA 15-3 was analyzed in the blood samples of patients consecutively admitted for SARS-CoV-2 pneumonia and whose blood samples were available in the biobank. Other prognostic markers were also measured (interleukin 6 [IL6], C-reactive protein [CRP], D-dimer, troponin T, and NT-ProBNP). The occurrence of in-hospital complications was registered, including death, the need for medical intensive care, and oxygen therapy at discharge. In this study, 539 patients were recruited (54.9% men, mean age: 59.6 ± 16.4 years). At admission, the mean concentrations of CA 15-3 was 20.5 ± 15.8 U/mL, and the concentration was correlated with male sex, older age, and other severity markers of coronavirus disease of 2019 (COVID-19) (IL6, CRP, D-dimer, troponine T, and NT-ProBNP). CA 15-3 levels were higher in patients who died (n = 56, 10.4%) (35.33 ± 30.45 vs. 18.8 ± 12.11, p < 0.001), who required intensive medical support (n = 78, 14.4%; 31.17 ± 27.83 vs. 18.68 ± 11.83; p < 0.001), and who were discharged with supplemental oxygen (n = 64, 13.3%; 22.65 ± 14.41 vs. 18.2 ± 11.7; p = 0.011). Elevated CA 15-3 levels (above 34.5 U/mL) were a strong predictor of a complicated in-hospital course, in terms of a higher risk of death (adjusted odds ratio [OR] 3.74, 95% confidence interval [CI]: 1.22-11.9, p = 0.022) and need for intensive care (adjusted OR 4.56, 95% CI: 1.37-15.8) after adjusting for all other risk factors. The degree of lung damage and fibrosis evaluated in terms of CA 15-3 concentrations may allow early identification of the increased risk of complications in patients with SARS-CoV-2 pneumonia.S

    Determinación postmorten de las isoformormas de Creatin kinasa-MB, en los fluidos de cádaver y su correlación con otros marcadores bioquímicos cardíacos / José Antonio Noguera Velasco ; dirección Eduardo Osuna Carrillo de Albornoz, Aurelio Luna Maldonado, Pedro Martínez Hernández.

    No full text
    Tesis-Universidad de Murcia.Consulte la tesis en: BCA. GENERAL. ARCHIVO UNIVERSITARIO. T.M. 2601

    Value of increased soluble suppressor tumorigenicity biomarker 2 (sST2) on admission as an indicator of severity in patients with COVID-19.

    Get PDF
    BACKGROUND Soluble suppressor of tumorigenicity-2 (sST2) is a biomarker for heart failure and pulmonary injury. We hypothesize that sST2 could help predict severity of SARS-CoV-2 infections. METHODS sST2 was analyzed in patients consecutively admitted for SARS-CoV-2 pneumonia. Other prognostic markers were also measured. In-hospital complications were registered, including death, ICU admission, and respiratory support requirements. RESULTS 495 patients were studied (53% male, age: 57.6±17.6). At admission, median sST2 concentrations was 48.5ng/mL [IQR, 30.6-83.1ng/mL] and correlated with male gender, older age, comorbidities, other severity biomarkers, and respiratory support requirements. sST2 levels were higher in patients who died (n=45, 9.1%) (45.6 [28.0, 75.9]ng/mL vs. 144 [82.6, 319] ng/mL, p210ng/mL were a strong predictor of complicated in-hospital courses, with higher risk of death (OR, 39.3, CI95% 15.9, 103) and death/ICU (OR 38.3, CI95% 16.3-97.5) after adjusting for all other risk factors. The addition of sST2 enhanced the predictive capacity of mortality risk models. CONCLUSIONS sST2 represents a robust severity predictor in COVID-19 and could be an important tool for identifying at-risk patients who may benefit from closer follow-up and specific therapies.S

    CRB2 completes a fully expressed Crumbs complex in the Retinal Pigment Epithelium

    Get PDF
    The CRB proteins CRB1, CRB2 and CRB3 are members of the cell polarity complex Crumbs in mammals that together with Scribble and Par complexes stablish the polarity of a variety of cell types. Although many members of the Crumbs complex proteins are expressed in the retinal pigment epithelium (RPE) and even though the mRNA of CRB2 has been detected in ARPE-19 cells and in the RPE/Choroid, to date no CRB protein has yet been found in this tissue. To investigate this possibility, we generated an antibody that specifically recognize the mouse CRB2 protein and we demonstrate the expression of CRB2 in mouse RPE. Confocal analysis shows that CRB2 is restricted to the apicolateral membrane of RPE cells and more precisely, in the tight junctions. Our study identified CRB2 as the member of the CRB protein family that is present together with the rest of the components of the Crumbs complex in the RPE apico-lateral cell membrane. Considering that the functions of CRB proteins are decisive in the establishment and maintenance of cell-cell junctions in several epithelial-derived cell types, we believe that these findings are a relevant starting point for unraveling the functions that CRB2 might perform in the RPE

    In Vitro Hemocompatibility and Genotoxicity Evaluation of Dual-Labeled [99mTc]Tc-FITC-Silk Fibroin Nanoparticles for Biomedical Applications

    No full text
    Nuclear imaging is a highly sensitive and noninvasive imaging technique that has become essential for medical diagnosis. The use of radiolabeled nanomaterials capable of acting as imaging probes has shown rapid development in recent years as a powerful, highly sensitive, and noninvasive tool. In addition, quantitative single-photon emission computed tomography (SPECT) images performed by incorporating radioisotopes into nanoparticles (NPs) might improve the evaluation and the validation of potential clinical treatments. In this work, we present a direct method for [99mTc]Tc-radiolabeling of FITC-tagged silk fibroin nanoparticles (SFN). NPs were characterized by means of dynamic light scattering and scanning electron microscopy. In vitro studies were carried out, including the evaluation of stability in biological media and the evaluation of hemocompatibility and genotoxicity using the cytokinesis block micronucleus (CBMN) assay. The radiolabeling method was reproducible and robust with high radiolabeling efficiency (&sim;95%) and high stability in biological media. Hydrodynamic properties of the radiolabeled NPs remain stable after dual labeling. The interaction of SFN with blood elicits a mild host response, as expected. Furthermore, CBMN assay did not show genotoxicity induced by [99mTc]Tc-FITC-SFN under the described conditions. In conclusion, a feasible and robust dual-labeling method has been developed whose applicability has been demonstrated in vitro, showing its value for further investigations of silk fibroin NPs biodistribution in vivo

    In Vitro Hemocompatibility and Genotoxicity Evaluation of Dual-Labeled [<sup>99m</sup>Tc]Tc-FITC-Silk Fibroin Nanoparticles for Biomedical Applications

    No full text
    Nuclear imaging is a highly sensitive and noninvasive imaging technique that has become essential for medical diagnosis. The use of radiolabeled nanomaterials capable of acting as imaging probes has shown rapid development in recent years as a powerful, highly sensitive, and noninvasive tool. In addition, quantitative single-photon emission computed tomography (SPECT) images performed by incorporating radioisotopes into nanoparticles (NPs) might improve the evaluation and the validation of potential clinical treatments. In this work, we present a direct method for [99mTc]Tc-radiolabeling of FITC-tagged silk fibroin nanoparticles (SFN). NPs were characterized by means of dynamic light scattering and scanning electron microscopy. In vitro studies were carried out, including the evaluation of stability in biological media and the evaluation of hemocompatibility and genotoxicity using the cytokinesis block micronucleus (CBMN) assay. The radiolabeling method was reproducible and robust with high radiolabeling efficiency (∼95%) and high stability in biological media. Hydrodynamic properties of the radiolabeled NPs remain stable after dual labeling. The interaction of SFN with blood elicits a mild host response, as expected. Furthermore, CBMN assay did not show genotoxicity induced by [99mTc]Tc-FITC-SFN under the described conditions. In conclusion, a feasible and robust dual-labeling method has been developed whose applicability has been demonstrated in vitro, showing its value for further investigations of silk fibroin NPs biodistribution in vivo

    Influence of Home Indoor Dampness Exposure on Volatile Organic Compounds in Exhaled Breath of Mothers and Their Infants: The NELA Birth Cohort

    No full text
    Currently, the effect of exposure to indoor air contaminants and the presence of dampness at home on respiratory/atopic health is of particular concern to physicians. The measurement of volatile organic compounds (VOCs) in exhaled breath is a useful approach for monitoring environmental exposures. A great advantage of this strategy is that it allows the study of the impact of pollutants on the metabolism through a non-invasive method. In this paper, the levels of nine VOCs (acetone, isoprene, toluene, p/m-xylene, o-xylene, styrene, benzaldehyde, naphthalene, and 2-ethyl-1-hexanol) in the exhaled breath of subjects exposed and not exposed to home dampness were assessed. Exhaled breath samples were collected from 337 mother&ndash;child pairs of a birth cohort and analysed by gas-chromatography&ndash;mass-spectrometry. It was observed that the levels of 2-ethyl-1-hexanol in the exhaled breath of the mothers were significantly influenced by exposure to household humidity. In the case of the infants, differences in some of the VOC levels related to home dampness exposure; however, they did not reach statistical significance. In addition, it was also found that the eosinophil counts of the mothers exposed to home dampness were significantly elevated compared to those of the non-exposed mothers. To our knowledge, these findings show, for the first time, that exposure to home dampness may influence VOC patterns in exhaled breath

    Recurrent genetic variants and prioritization of variants of uncertain clinical significance associated with hereditary breast and ovarian cancer in families from the Region of Murcia

    No full text
    Hereditary breast and ovarian cancer (HBOC) follows an autosomal dominant inheritance pattern of cancer susceptibility genes. The risk of developing this disease is primarily associated with germline mutations in the BRCA1 and BRCA2 genes. The advent of massive genetic sequencing technologies has expanded the mutational spectrum of this hereditary syndrome, thereby increasing the number of variants of uncertain clinical significance (VUS) detected by genetic testing

    Variantes genéticas recurrentes y priorización de variantes de significado clínico desconocido asociadas al síndrome de cáncer de mama y ovario hereditario en familias de la Región de Murcia

    No full text
    El síndrome de cáncer de mama y ovario hereditario (SCMOH) presenta un patrón de herencia autosómica dominante en genes de susceptibilidad al cáncer y su riesgo está principalmente vinculado a mutaciones germinales en BRCA1 y BRCA2. Sin embargo, la implementación de paneles genéticos mediante secuenciación masiva en la práctica asistencial, ha ampliado el espectro mutacional de este síndrome hereditario y el número de variantes de significado clínico desconocido (VUS) detectadas en los estudios genéticos
    corecore