11 research outputs found

    Evolution and Application of Inteins in Candida species: a Review

    Get PDF
    Inteins are invasive intervening sequences that perform an autocatalytic splicing from their host proteins. Among eukaryotes, these elements are present in many fungal species, including those considered opportunistic or primary pathogens, such as Candida spp. Here we reviewed and updated the list of Candida species containing inteins in the genes VMA, THRRS and GLT1 and pointed out the importance of these elements as molecular markers for molecular epidemiological researches and species-specific diagnosis, since the presence, as well as the size of these inteins, is polymorphic among the different species. Although absent in Candida albicans, these elements are present in different sizes, in some environmental Candida spp. and also in most of the non-albicans Candida spp. considered emergent opportunistic pathogens. Besides, the possible role of these inteins in yeast physiology was also discussed in the light of the recent findings on the importance of these elements as post-translational modulators of gene expression, reinforcing their relevance as alternative therapeutic targets for the treatment of non-albicans Candida infections, because, once the splicing of an intein is inhibited, its host protein, which is usually a housekeeping protein, becomes nonfunctional

    Loop-mediated Isothermal Amplification and nested PCR of the Internal Transcribed Spacer (ITS) for Histoplasma capsulatum detection.

    No full text
    BackgroundHistoplasmosis is a neglected disease that affects mainly immunocompromised patients, presenting a progressive dissemination pattern and a high mortality rate, mainly due to delayed diagnosis, caused by slow fungal growth in culture. Therefore, a fast, suitable and cost-effective assay is required for the diagnosis of histoplasmosis in resource-limited laboratories. This study aimed to develop and evaluate two new molecular approaches for a more cost-effective diagnosis of histoplasmosis.MethodologySeeking a fast, suitable, sensitive, specific and low-cost molecular detection technique, we developed a new Loop-mediated Isothermal Amplification (LAMP) assay and nested PCR, both targeting the Internal Transcribed Spacer (ITS) multicopy region of Histoplasma capsulatum. The sensitivity was evaluated using 26 bone marrow and 1 whole blood specimens from patients suspected to have histoplasmosis and 5 whole blood samples from healthy subjects. All specimens were evaluated in culture, as a reference standard test, and Hcp100 nPCR, as a molecular reference test. A heparin-containing whole blood sample from a heathy subject was spiked with H. capsulatum cells and directly assayed with no previous DNA extraction.ResultsBoth assays were able to detect down to 1 fg/ÎŒL of H. capsulatum DNA, and ITS LAMP results could also be revealed to the naked-eye by adding SYBR green to the reaction tube. In addition, both assays were able to detect all clades of Histoplasma capsulatum cryptic species complex. No cross-reaction with other fungal pathogens was presented. In comparison with Hcp100 nPCR, both assays reached 83% sensitivity and 92% specificity. Furthermore, ITS LAMP assay showed no need for DNA extraction, since it could be directly applied to crude whole blood specimens, with a limit of detection of 10 yeasts/ÎŒL.ConclusionITS LAMP and nPCR assays have the potential to be used in conjunction with culture for early diagnosis of progressive disseminated histoplasmosis, allowing earlier, appropriate treatment of the patient. The possibility of applying ITS LAMP, as a direct assay, with no DNA extraction and purification steps, makes it suitable for resource-limited laboratories. However, more studies are necessary to validate ITS LAMP and nPCR as direct assay in other types of clinical specimens

    Cryptococcus neoformans Prp8 Intein: An In Vivo Target-Based Drug Screening System in Saccharomyces cerevisiae to Identify Protein Splicing Inhibitors and Explore Its Dynamics

    No full text
    Inteins are genetic mobile elements that are inserted within protein-coding genes, which are usually housekeeping genes. They are transcribed and translated along with the host gene, then catalyze their own splicing out of the host protein, which assumes its functional conformation thereafter. As Prp8 inteins are found in several important fungal pathogens and are absent in mammals, they are considered potential therapeutic targets since inhibiting their splicing would selectively block the maturation of fungal proteins. We developed a target-based drug screening system to evaluate the splicing of Prp8 intein from the yeast pathogen Cryptococcus neoformans (CnePrp8i) using Saccharomyces cerevisiae Ura3 as a non-native host protein. In our heterologous system, intein splicing preserved the full functionality of Ura3. To validate the system for drug screening, we examined cisplatin, which has been described as an intein splicing inhibitor. By using our system, new potential protein splicing inhibitors may be identified and used, in the future, as a new class of drugs for mycosis treatment. Our system also greatly facilitates the visualization of CnePrp8i splicing dynamics in vivo

    Monitoring the Establishment of VOC Gamma in Minas Gerais, Brazil: A Retrospective Epidemiological and Genomic Surveillance Study

    No full text
    Since its first identification in Brazil, the variant of concern (VOC) Gamma has been associated with increased infection and transmission rates, hospitalizations, and deaths. Minas Gerais (MG), the second-largest populated Brazilian state with more than 20 million inhabitants, observed a peak of cases and deaths in March–April 2021. We conducted a surveillance study in 1240 COVID-19-positive samples from 305 municipalities distributed across MG’s 28 Regional Health Units (RHU) between 1 March to 27 April 2021. The most common variant was the VOC Gamma (71.2%), followed by the variant of interest (VOI) zeta (12.4%) and VOC alpha (9.6%). Although the predominance of Gamma was found in most of the RHUs, clusters of Zeta and Alpha variants were observed. One Alpha-clustered RHU has a history of high human mobility from countries with Alpha predominance. Other less frequent lineages, such as P.4, P.5, and P.7, were also identified. With our genomic characterization approach, we estimated the introduction of Gamma on 7 January 2021, at RHU Belo Horizonte. Differences in mortality between the Zeta, Gamma and Alpha variants were not observed. We reinforce the importance of vaccination programs to prevent severe cases and deaths during transmission peaks

    Field and classroom initiatives for portable sequence-based monitoring of dengue virus in Brazil

    No full text
    This work was supported by Decit, SCTIE, Brazilian Ministry of Health, Conselho Nacional de Desenvolvimento CientĂ­fico - CNPq (440685/ 2016-8, 440856/2016-7 and 421598/2018-2), Coordenação de Aperfeiçoamento de Pessoal de NĂ­vel Superior - CAPES - (88887.130716/2016-00), European Union’s Horizon 2020 Research and Innovation Programme under ZIKAlliance Grant Agreement (734548), STARBIOS (709517), Fundação de Amparo Ă  Pesquisa do Estado do Rio de Janeiro – FAPERJ (E-26/2002.930/2016), International Development Research Centre (IDRC) Canada (108411-001), European Union’s Horizon 2020 under grant agreements ZIKACTION (734857) and ZIKAPLAN (734548).Fundação Ezequiel Dias. LaboratĂłrio Central de SaĂșde PĂșblica do Estado de Minas Gerais. Belo Horizonte, MG, Brazil / Latin American Genomic Surveillance Arboviral Network.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de FlavivĂ­rus. Rio de Janeiro, RJ, Brazil / Latin American Genomic Surveillance Arboviral Network.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de FlavivĂ­rus. Rio de Janeiro, RJ, Brazil Latin American Genomic Surveillance Arboviral Network.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de FlavivĂ­rus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de FlavivĂ­rus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto LeĂŽnidas e Maria Deane. LaboratĂłrio de Ecologia de Doenças TransmissĂ­veis na AmazĂŽnia. Manaus, AM, Brazil.Secretaria de SaĂșde do Estado de Mato Grosso do Sul. LaboratĂłrio Central de SaĂșde PĂșblica. Campo Grande, MS, Brazil.Fundação Ezequiel Dias. LaboratĂłrio Central de SaĂșde PĂșblica do Estado de Minas Gerais. Belo Horizonte, MG, Brazil.LaboratĂłrio Central de SaĂșde PĂșblica Dr. Giovanni Cysneiros. GoiĂąnia, GO, Brazil.LaboratĂłrio Central de SaĂșde PĂșblica Professor Gonçalo Moniz. Salvador, BA, Brazil.Secretaria de SaĂșde do Estado da Bahia. Salvador, BA, Brazil.LaboratĂłrio Central de SaĂșde PĂșblica Dr. Milton Bezerra Sobral. Recife, PE, Brazil.LaboratĂłrio Central de SaĂșde PĂșblica do Estado de Mato Grosso. CuiabĂĄ, MT, Brazil.LaboratĂłrio Central de SaĂșde PĂșblica do Distrito Federal. BrasĂ­lia, DF, Brazil.Fundação Ezequiel Dias. LaboratĂłrio Central de SaĂșde PĂșblica do Estado de Minas Gerais. Belo Horizonte, MG, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de FlavivĂ­rus. Rio de Janeiro, RJ, Brazil.MinistĂ©rio da SaĂșde. Secretaria de VigilĂąncia em SaĂșde. Coordenação Geral dos LaboratĂłrios de SaĂșde PĂșblica. BrasĂ­lia, DF, Brazil.MinistĂ©rio da SaĂșde. Secretaria de VigilĂąncia em SaĂșde. Coordenação Geral dos LaboratĂłrios de SaĂșde PĂșblica. BrasĂ­lia, DF, Brazil.Organização Pan-Americana da SaĂșde / Organização Mundial da SaĂșde. BrasĂ­lia, DF, Brazil.Organização Pan-Americana da SaĂșde / Organização Mundial da SaĂșde. BrasĂ­lia, DF, Brazil.Organização Pan-Americana da SaĂșde / Organização Mundial da SaĂșde. BrasĂ­lia, DF, Brazil.MinistĂ©rio da SaĂșde. Secretaria de VigilĂąncia em SaĂșde Coordenação Geral das Arboviroses. BrasĂ­lia, DF, Brazil.MinistĂ©rio da SaĂșde. Secretaria de VigilĂąncia em SaĂșde Coordenação Geral das Arboviroses. BrasĂ­lia, DF, Brazil.MinistĂ©rio da SaĂșde. Secretaria de VigilĂąncia em SaĂșde Coordenação Geral das Arboviroses. BrasĂ­lia, DF, Brazil.MinistĂ©rio da SaĂșde. Secretaria de VigilĂąncia em SaĂșde Coordenação Geral das Arboviroses. BrasĂ­lia, DF, Brazil.Fundação Hemocentro de RibeirĂŁo Preto. RibeirĂŁo Preto, SP, Brazil.Gorgas Memorial Institute for Health Studies. Panama, Panama.Universidade Federal da Bahia. VitĂłria da Conquista, BA, Brazil.Laboratorio Central de Salud PĂșblica. AsunciĂłn, Paraguay.Fundação Oswaldo Cruz. Bio-Manguinhos. Rio de Janeiro, RJ, Brazil.MinistĂ©rio da SaĂșde. Secretaria de VigilĂąncia em SaĂșde. Coordenação Geral dos LaboratĂłrios de SaĂșde PĂșblica. BrasĂ­lia, DF, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de FlavivĂ­rus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de FlavivĂ­rus. Rio de Janeiro, RJ, BrazilFundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de FlavivĂ­rus. Rio de Janeiro, RJ, BrazilMinistĂ©rio da SaĂșde. Secretaria de VigilĂąncia em SaĂșde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de FlavivĂ­rus. Rio de Janeiro, RJ, Brazil.LaboratĂłrio Central de SaĂșde PĂșblica do Estado de Mato Grosso do Sul. Campo Grande, MS, Brazil.LaboratĂłrio Central de SaĂșde PĂșblica do Estado de Mato Grosso do Sul. Campo Grande, MS, Brazil.Instituto de Investigaciones en Ciencias de la Salud. San Lorenzo, Paraguay.Secretaria de Estado de SaĂșde de Mato Grosso do Sul. Campo Grande, MS, Brazil.Fundação Oswaldo Cruz. Campo Grande, MS, Brazil.Fundação Hemocentro de RibeirĂŁo Preto. RibeirĂŁo Preto, SP, Brazil.LaboratĂłrio Central de SaĂșde PĂșblica Dr. Giovanni Cysneiros. GoiĂąnia, GO, Brazil.LaboratĂłrio Central de SaĂșde PĂșblica Dr. Giovanni Cysneiros. GoiĂąnia, GO, Brazil.LaboratĂłrio Central de SaĂșde PĂșblica Professor Gonçalo Moniz. Salvador, BA, Brazil.LaboratĂłrio Central de SaĂșde PĂșblica Dr. Milton Bezerra Sobral. Recife, PE, Brazil.LaboratĂłrio Central de SaĂșde PĂșblica do Distrito Federal. BrasĂ­lia, DF, Brazil.Secretaria de SaĂșde de Feira de Santana. Feira de Santana, Ba, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de FlavivĂ­rus. Rio de Janeiro, RJ, Brazil.Universidade Federal de Minas Gerais. Instituto de CiĂȘncias BiolĂłgicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de CiĂȘncias BiolĂłgicas. Belo Horizonte, MG, Brazil.Secretaria de SaĂșde do Estado de Minas Gerais. Belo Horizonte, MG, Brazil.Hospital das Forças Armadas. BrasĂ­lia, DF, Brazil.MinistĂ©rio da SaĂșde. Secretaria de VigilĂąncia em SaĂșde. BrasĂ­lia, DF, Brazil.MinistĂ©rio da SaĂșde. Secretaria de VigilĂąncia em SaĂșde. BrasĂ­lia, DF, Brazil.Universidade Nova de Lisboa. Instituto de Higiene e Medicina Tropical. Lisboa, Portugal.University of Sydney. School of Life and Environmental Sciences and School of Medical Sciences. Marie Bashir Institute for Infectious Diseases and Biosecurity. Sydney, NSW, Australia.University of KwaZulu-Natal. College of Health Sciences. KwaZulu-Natal Research Innovation and Sequencing Platform. Durban, South Africa.University of Oxford. Peter Medawar Building. Department of Zoology. Oxford, UK.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de FlavivĂ­rus. Rio de Janeiro, RJ, Brazil.Universidade Estadual de Feira de Santana. Salvador, BA, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.Universidade de BrasĂ­lia. BrasĂ­lia, DF, Brazil.Universidade Salvador. Salvador, BA, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de FlavivĂ­rus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de FlavivĂ­rus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de FlavivĂ­rus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de FlavivĂ­rus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de FlavivĂ­rus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de FlavivĂ­rus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de FlavivĂ­rus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de FlavivĂ­rus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaboratĂłrio de Hantaviroses e Rickettsioses. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto LeĂŽnidas e Maria Deane. LaboratĂłrio de Ecologia de Doenças TransmissĂ­veis na AmazĂŽnia. Manaus, AM, Brazil.Universidade Federal de Minas Gerais. Instituto de CiĂȘncias BiolĂłgicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de CiĂȘncias BiolĂłgicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de CiĂȘncias BiolĂłgicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de CiĂȘncias BiolĂłgicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de CiĂȘncias BiolĂłgicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de CiĂȘncias BiolĂłgicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de CiĂȘncias BiolĂłgicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de CiĂȘncias BiolĂłgicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de CiĂȘncias BiolĂłgicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de CiĂȘncias BiolĂłgicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de CiĂȘncias BiolĂłgicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de CiĂȘncias BiolĂłgicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de CiĂȘncias BiolĂłgicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Faculdade de Medicina VeterinĂĄria. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Faculdade de Medicina VeterinĂĄria. Belo Horizonte, MG, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.LaboratĂłrio Central de SaĂșde PĂșblica do Estado do ParanĂĄ. Curitiba, PR, Brazil.LaboratĂłrio Central de SaĂșde PĂșblica do Estado de RondĂŽnia. Porto Velho, RO, Brazil.LaboratĂłrio Central de SaĂșde PĂșblica do Estado do Amazonas. Manaus, AM, Brazil.LaboratĂłrio Central de SaĂșde PĂșblica do Estado do Rio Grande do Norte. Natal, RN, Brazil.LaboratĂłrio Central de SaĂșde PĂșblica do Estado de Mato Grosso. CuiabĂĄ, MT, Brazil.LaboratĂłrio Central de SaĂșde PĂșblica Professor Gonçalo Moniz. Salvador, BA, Brazil.LaboratĂłrio Central de SaĂșde PĂșblica Professor Gonçalo Moniz. Salvador, BA, Brazil.LaboratĂłrio Central de SaĂșde PĂșblica Noel Nutels. Rio de Janeiro, RJ, Brazil.Instituto Adolfo Lutz. SĂŁo Paulo, SP, Brazil.MinistĂ©rio da SaĂșde. Secretaria de VigilĂąncia em SaĂșde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.MinistĂ©rio da SaĂșde. Secretaria de VigilĂąncia em SaĂșde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.MinistĂ©rio da SaĂșde. Secretaria de VigilĂąncia em SaĂșde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.MinistĂ©rio da SaĂșde. Secretaria de VigilĂąncia em SaĂșde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Universidade de SĂŁo Paulo. Instituto de Medicina Tropical. SĂŁo Paulo, SP, Brazil.Universidade de SĂŁo Paulo. Instituto de Medicina Tropical. SĂŁo Paulo, SP, Brazil.Universidade de SĂŁo Paulo. Instituto de Medicina Tropical. SĂŁo Paulo, SP, Brazil.University of Oxford. Peter Medawar Building. Department of Zoology. Oxford, UK.Instituto Nacional de Enfermedades Virales Humanas Dr. Julio Maiztegui. Pergamino, Argentina.Gorgas Memorial Institute for Health Studies. Panama, Panama.Gorgas Memorial Institute for Health Studies. Panama, Panama.Gorgas Memorial Institute for Health Studies. Panama, Panama.Instituto de Salud PĂșblica de Chile. Santiago, Chile.Instituto de DiagnĂłstico y Referencia EpidemiolĂłgicos Dr. Manuel MartĂ­nez BĂĄez. Ciudad de MĂ©xico, MĂ©xico.Instituto Nacional de Enfermedades Infecciosas Dr Carlos G MalbrĂĄn. Buenos Aires, Argentina.Ministerio de Salud PĂșblica de Uruguay. Montevideo, Uruguay.Instituto Costarricense de InvestigaciĂłn y Enseñanza em NutriciĂłn y Salud. Tres RĂ­os, Costa Rica.Instituto Nacional de Investigacion en Salud Publica Dr Leopoldo Izquieta PĂ©rez. Guayaquil, Ecuador.Instituto Nacional de Investigacion en Salud Publica Dr Leopoldo Izquieta PĂ©rez. Guayaquil, Ecuador.Universidade Federal de Pernambuco. Recife, PE, Brazil.Secretaria de SaĂșde do Estado de Minas Gerais. Belo Horizonte. MG, Brazil.MinistĂ©rio da SaĂșde. Secretaria de VigilĂąncia em SaĂșde. BrasĂ­lia, DF, Brazil.MinistĂ©rio da SaĂșde. Secretaria de VigilĂąncia em SaĂșde. BrasĂ­lia, DF, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Fundação Hemocentro de RibeirĂŁo Preto. RibeirĂŁo Preto, SP, Brazil.Secretaria de SaĂșde de Feira de Santana. Feira de Santana, BA, Brazil.Universidade Federal de Minas Gerais. Instituto de CiĂȘncias BiolĂłgicas. Belo Horizonte, MG, Brazil.Brazil experienced a large dengue virus (DENV) epidemic in 2019, highlighting a continuous struggle with effective control and public health preparedness. Using Oxford Nanopore sequencing, we led field and classroom initiatives for the monitoring of DENV in Brazil, generating 227 novel genome sequences of DENV1-2 from 85 municipalities (2015–2019). This equated to an over 50% increase in the number of DENV genomes from Brazil available in public databases. Using both phylogenetic and epidemiological models we retrospectively reconstructed the recent transmission history of DENV1-2. Phylogenetic analysis revealed complex patterns of transmission, with both lineage co-circulation and replacement. We identified two lineages within the DENV2 BR-4 clade, for which we estimated the effective reproduction number and pattern of seasonality. Overall, the surveillance outputs and training initiative described here serve as a proof-of-concept for the utility of real-time portable sequencing for research and local capacity building in the genomic surveillance of emerging viruses

    Ser e tornar-se professor: prĂĄticas educativas no contexto escolar

    No full text

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    No full text
    © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide. Methods: A multimethods analysis was performed as part of the GlobalSurg 3 study—a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital. Findings: Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3·85 [95% CI 2·58–5·75]; p<0·0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63·0% vs 82·7%; OR 0·35 [0·23–0·53]; p<0·0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer. Interpretation: Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised. Funding: National Institute for Health and Care Research

    Global variation in postoperative mortality and complications after cancer surgery: a multicentre, prospective cohort study in 82 countries

    No full text
    © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 licenseBackground: 80% of individuals with cancer will require a surgical procedure, yet little comparative data exist on early outcomes in low-income and middle-income countries (LMICs). We compared postoperative outcomes in breast, colorectal, and gastric cancer surgery in hospitals worldwide, focusing on the effect of disease stage and complications on postoperative mortality. Methods: This was a multicentre, international prospective cohort study of consecutive adult patients undergoing surgery for primary breast, colorectal, or gastric cancer requiring a skin incision done under general or neuraxial anaesthesia. The primary outcome was death or major complication within 30 days of surgery. Multilevel logistic regression determined relationships within three-level nested models of patients within hospitals and countries. Hospital-level infrastructure effects were explored with three-way mediation analyses. This study was registered with ClinicalTrials.gov, NCT03471494. Findings: Between April 1, 2018, and Jan 31, 2019, we enrolled 15 958 patients from 428 hospitals in 82 countries (high income 9106 patients, 31 countries; upper-middle income 2721 patients, 23 countries; or lower-middle income 4131 patients, 28 countries). Patients in LMICs presented with more advanced disease compared with patients in high-income countries. 30-day mortality was higher for gastric cancer in low-income or lower-middle-income countries (adjusted odds ratio 3·72, 95% CI 1·70–8·16) and for colorectal cancer in low-income or lower-middle-income countries (4·59, 2·39–8·80) and upper-middle-income countries (2·06, 1·11–3·83). No difference in 30-day mortality was seen in breast cancer. The proportion of patients who died after a major complication was greatest in low-income or lower-middle-income countries (6·15, 3·26–11·59) and upper-middle-income countries (3·89, 2·08–7·29). Postoperative death after complications was partly explained by patient factors (60%) and partly by hospital or country (40%). The absence of consistently available postoperative care facilities was associated with seven to 10 more deaths per 100 major complications in LMICs. Cancer stage alone explained little of the early variation in mortality or postoperative complications. Interpretation: Higher levels of mortality after cancer surgery in LMICs was not fully explained by later presentation of disease. The capacity to rescue patients from surgical complications is a tangible opportunity for meaningful intervention. Early death after cancer surgery might be reduced by policies focusing on strengthening perioperative care systems to detect and intervene in common complications. Funding: National Institute for Health Research Global Health Research Unit

    Elective Cancer Surgery in COVID-19–Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study

    No full text
    corecore