95 research outputs found

    Hygroscopicity of Nucleated Nanoparticles in CLOUD 7 Experiments

    Get PDF
    We investigated hygroscopicity of nucleated nanoparticles derived from dimethylamine and α-pinene with sulfuric acid during CLOUD 7 (Cosmic Leaving OUtdoor Droplets) campaign at CERN. The hygroscopicity of nucleated nanoparticles from 10 to 20 nm in mobility diameter was measured with a nano tandem differential mobility analyzer (nano-TDMA). Here, we present preliminary results from the CLOUD 7 experiments

    New particle formation event detection with Mask R-CNN

    Get PDF
    Atmospheric new particle formation (NPF) is an important source of climate-relevant aerosol particles which has been observed at many locations globally. To study this phenomenon, the first step is to identify whether an NPF event occurs or not on a given day. In practice, NPF event identification is performed visually by classifying the NPF event or non-event days from the particle number size distribution surface plots. Unfortunately, this day-by-day visual classification is time-consuming and labor-intensive, and the identification process renders subjective results. To detect NPF events automatically, we regard the visual signature (banana shape) which has been observed all over the world in NPF surface plots as a special kind of object, and a deep learning model called Mask R-CNN is applied to localize the spatial layouts of NPF events in their surface plots. Utilizing only 358 human-annotated masks on data from the Station for Measuring Ecosystem-Atmosphere Relations (SMEAR) II station (Hyytiala, Finland), the Mask R-CNN model was successfully generalized for three SMEAR stations in Finland and the San Pietro Capofiume (SPC) station in Italy. In addition to the detection of NPF events (especially the strongest events), the presented method can determine the growth rates, start times, and end times for NPF events automatically. The automatically determined growth rates agree with the manually determined growth rates. The statistical results validate the potential of applying the proposed method to different sites, which will improve the automatic level for NPF event detection and analysis. Furthermore, the proposed automatic NPF event analysis method can minimize subjectivity compared with human-made analysis, especially when long-term data series are analyzed and statistical comparisons between different sites are needed for event characteristics such as the start and end times, thereby saving time and effort for scientists studying NPF events.Peer reviewe

    Biotic stress accelerates formation of climate-relevant aerosols in boreal forests

    Get PDF
    Boreal forests are a major source of climate-relevant biogenic secondary organic aerosols (SOAs) and will be greatly influenced by increasing temperature. Global warming is predicted to not only increase emissions of reactive biogenic volatile organic compounds (BVOCs) from vegetation directly but also induce large-scale insect outbreaks, which significantly increase emissions of reactive BVOCs. Thus, climate change factors could substantially accelerate the formation of biogenic SOAs in the troposphere. In this study, we have combined results from field and laboratory experiments, satellite observations and global-scale modelling in order to evaluate the effects of insect herbivory and large-scale outbreaks on SOA formation and the Earth's climate. Field measurements demonstrated 11-fold and 20-fold increases in monoterpene and sesquiterpene emissions respectively from damaged trees during a pine sawfly (Neodiprion sertifer) outbreak in eastern Finland. Laboratory chamber experiments showed that feeding by pine weevils (Hylobius abietis) increased VOC emissions from Scots pine and Norway spruce seedlings by 10-50 fold, resulting in 200-1000-fold increases in SOA masses formed via ozonolysis. The influence of insect damage on aerosol concentrations in boreal forests was studied with a global chemical transport model GLOMAP and MODIS satellite observations. Global-scale modelling was performed using a 10-fold increase in monoterpene emission rates and assuming 10% of the boreal forest area was experiencing outbreak. Results showed a clear increase in total particulate mass (local max. 480 %) and cloud condensation nuclei concentrations (45 %). Satellite observations indicated a 2-fold increase in aerosol optical depth over western Canada's pine forests in August during a bark beetle outbreak. These results suggest that more frequent insect outbreaks in a warming climate could result in substantial increase in biogenic SOA formation in the boreal zone and, thus, affect both aerosol direct and indirect forcing of climate at regional scales. The effect of insect outbreaks on VOC emissions and SOA formation should be considered in future climate predictions.Peer reviewe
    • …
    corecore